Contacto : cgeofisica@gmail.com

Ciencia y Geofísica

Grupo IGPERU

Ciencia y Geofísica

facebook
instagram
linkein
whatsapp
  • Meteorología y Climatología

    Estudiamos el comportamiento de los fenómenos atmosféricos!

  • Volcanología

    Estudiamos el comportamiento de los volcánes!

  • Prospección Geofísica

    Estudiamos técnicas físicas y matemáticas, aplicadas a la exploración del subsuelo para la búsqueda de recursos naturales y yacimientos minerales.

  • Geotermia

    Estudiamos los fenómenos térmicos que tienen lugar en el interior de la Tierra.

  • Tectonofísica

    Estudiamos la dinámica y cinemática de los procesos que deforman a la litosfera mediante métodos cuantitativos.

  • Geomagnetismo

    Estudiamos las propiedades magnéticas de la Tierra.

  • Inteligencia Artificial

    Aplicando los conocimientos en Inteligencia Artificial para convertir la Geofísica más inteligente.

Mostrando las entradas para la consulta movimiento ordenadas por fecha. Ordenar por relevancia Mostrar todas las entradas
Mostrando las entradas para la consulta movimiento ordenadas por fecha. Ordenar por relevancia Mostrar todas las entradas

EXPLORANDO LAS PROFUNDIDADES DE LA TIERRA: AVANCES EN EXPERIMENTOS DE ALTA PRESIÓN Y ALTA TEMPERATURA

La Tierra, nuestro hogar, es un planeta fascinante con una estructura interna compleja que ha intrigado a científicos, geólogos y geofísicos durante décadas. Para comprender mejor las condiciones extremas que se encuentran en las profundidades de la Tierra, los científicos han desarrollado técnicas avanzadas de experimentación de alta presión y alta temperatura. En este artículo, exploraremos los avances recientes en estos experimentos y cómo están ayudando a revelar los secretos mejor guardados de nuestro planeta.

Técnicas de Experimentación: Celda de Diamante con Yunque Calentada por Láser (DAC)

Una de las técnicas más utilizadas para generar condiciones de alta presión y alta temperatura es la celda de diamante con yunque calentada por láser, conocida como DAC por sus siglas en inglés. Esta técnica permite aplicar presiones extremadamente altas a una muestra mientras se calienta mediante un láser.

Desarrollo y Mejoras en las Técnicas de DAC Calentadas por Láser

A lo largo de los años, las capacidades de las técnicas de DAC calentadas por láser han experimentado avances significativos. Inicialmente, los experimentos se limitaban a presiones superiores a 300 GPa a temperatura ambiente. Sin embargo, gracias a los avances tecnológicos, ahora es posible alcanzar temperaturas más altas y presiones más elevadas, abriendo nuevas oportunidades para la investigación geofísica.

Estudios Anteriores y Avances en la Fusión del Hierro

Los estudios anteriores en este campo han proporcionado información crucial sobre la fusión del hierro a altas presiones y temperaturas. Por ejemplo, Boehler (1993) determinó la curva de fusión del hierro hasta 200 GPa y 3,800 K basándose en la observación visual del movimiento convectivo dentro de una muestra fundida. Además, Dubrovinsky et al. (2000) reportaron una transición de fase en el hierro a 300 GPa y 1,370 K utilizando medidas de difracción de rayos X (XRD).

Avances Recientes en Experimentos del Núcleo de la Tierra

Uno de los logros más significativos en esta área fue alcanzar condiciones de P-T de ultraalta precisión que coinciden con las del núcleo terrestre utilizando técnicas estáticas. Tateno et al. (2010) utilizaron vidrios de SiO2 para el aislamiento térmico en estos experimentos y reportaron medidas de XRD hasta 377 GPa y 5,700 K. Además, Tateno et al. (2012b) lograron llevar a cabo experimentos de DAC calentados por láser hasta 412 GPa y 5,900 K.

Resultados de los Experimentos y Estructuras Cristalinas

Los estudios con difracción de rayos X (XRD) han revelado estructuras cristalinas estables de diferentes compuestos en condiciones similares a las del núcleo interno de la Tierra. Estos estudios han identificado estructuras cristalinas estables de Fe, Fe-10% en peso de Ni, y FeO.

Análisis Químico de las Muestras

Además de los estudios de XRD, se llevan a cabo análisis químicos de muestras recuperadas de estos experimentos. Estos análisis proporcionan información valiosa sobre la fusión, la disociación y la partición de elementos en condiciones de alta presión. Aunque estos análisis presentan desafíos debido al tamaño pequeño de las muestras y la necesidad de un aislamiento térmico efectivo, los investigadores han logrado avances significativos en este campo.

Conclusiones y Perspectivas Futuras

Los experimentos de alta presión y alta temperatura son fundamentales para comprender las condiciones extremas en el interior de la Tierra. Los avances recientes en las técnicas de experimentación han permitido a los científicos simular con precisión las condiciones del núcleo terrestre y estudiar las propiedades físicas y químicas de los materiales a estas condiciones extremas.

A medida que continuamos explorando las profundidades de nuestro planeta, es probable que se realicen más avances en esta área, proporcionando nuevas perspectivas sobre la estructura y composición del núcleo terrestre y ayudando a desentrañar los misterios de la dinámica y evolución de nuestro planeta.

REFERENCIA BIBLIOGRÁFICA

HiroseLabrosseHernlund_AR2013.pdf

 

EXPLORANDO LAS PROFUNDIDADES DE LA TIERRA: DESCUBRIENDO LA COMPOSICIÓN INTERNA DEL PLANETA

La investigación de la composición interna del planeta es un campo fascinante y crucial dentro de la geofísica. A través de diversas técnicas y métodos, los científicos han logrado desentrañar los misterios que yacen bajo la superficie terrestre, revelando los materiales y estructuras que conforman el núcleo, el manto y la corteza de la Tierra.

EL NÚCLEO: EL CORAZÓN ARDIENTE DE NUESTRO PLANETA

El núcleo terrestre es una región fascinante y enigmática, cuyo estudio ha desafiado a los científicos durante décadas. Ubicado en el centro mismo de nuestro planeta, esta región ardiente y densa alberga secretos cruciales sobre el origen y la evolución de la Tierra, así como sobre los procesos dinámicos que moldean su superficie y su entorno.

a)     Estructura y composición del núcleo

El núcleo se divide en dos regiones principales: el núcleo externo y el núcleo interno. El núcleo externo tiene un radio aproximado de 3.480 kilómetros y se encuentra en estado líquido, compuesto principalmente por una aleación de hierro y níquel a temperaturas que oscilan entre los 4.000 y 5.000 grados Celsius. Esta capa líquida es responsable de la generación del campo magnético terrestre a través del proceso de dínamo auto sustentada.

Por otro lado, el núcleo interno tiene un radio de aproximadamente 1.220 kilómetros y se encuentra en estado sólido debido a las inmensas presiones que prevalecen en su interior, alcanzando un máximo de 360 giga pascales. Este núcleo sólido está compuesto principalmente por hierro cristalino con una estructura hexagonal compacta única, conocida como "hierro ligero".

La composición exacta del núcleo es un tema de debate continuo entre los científicos, pero se cree que además de hierro y níquel, también contiene pequeñas cantidades de otros elementos como azufre, oxígeno, silicio y posiblemente hidrógeno.

b)     Propiedades físicas y químicas del núcleo

El núcleo terrestre se encuentra en un estado único de alta presión y temperatura, lo que da lugar a propiedades físicas y químicas excepcionales. Una de las características más notables es la extrema densidad del núcleo, con un valor promedio de alrededor de 11.000 kilogramos por metro cúbico en el núcleo externo y 13.000 kilogramos por metro cúbico en el núcleo interno.

Otra propiedad fundamental es la alta conductividad eléctrica del núcleo líquido, que permite la generación del campo magnético terrestre a través del proceso de dínamo auto sustentada. Este campo magnético es crucial para proteger la vida en la Tierra de la radiación cósmica dañina y también desempeña un papel importante en la navegación y las comunicaciones.

Además, el núcleo es una fuente significativa de calor para el interior de la Tierra. Este calor, generado por la desintegración de elementos radiactivos y la cristalización del núcleo interno, impulsa la convección del manto y, en última instancia, la tectónica de placas en la superficie.

c)      Investigación y métodos de estudio

Debido a la inaccesibilidad directa del núcleo, los científicos han recurrido a diversos métodos indirectos para estudiar su composición y comportamiento. Uno de los enfoques más importantes es la sismología, que analiza la propagación de las ondas sísmicas generadas por terremotos y explosiones a través del interior de la Tierra. Al estudiar cómo estas ondas se refractan y reflejan en las diferentes capas del planeta, los sismólogos pueden inferir las propiedades físicas del núcleo y su estructura interna.

Otra técnica clave es el geomagnetismo, que estudia el campo magnético terrestre y sus variaciones. Mediante el análisis de los datos del campo magnético, los geofísicos pueden obtener información sobre los procesos dinámicos que ocurren en el núcleo externo líquido, responsable de la generación del campo magnético.

Además, los avances en la geodesia, la geoquímica y los modelos computacionales han contribuido significativamente a nuestro conocimiento sobre la composición y el comportamiento del núcleo. La integración de datos de múltiples fuentes ha permitido construir modelos cada vez más precisos y detallados de esta región crítica del interior de la Tierra.

d)     Implicaciones y desafíos futuros

El estudio del núcleo terrestre tiene implicaciones fundamentales para nuestra comprensión de la dinámica interna del planeta, la evolución del campo magnético y los procesos geológicos en la superficie. Además, el núcleo desempeña un papel crucial en la generación de energía a través del núcleo síntesis, lo que tiene implicaciones para la exploración de fuentes de energía alternativas.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno al núcleo. Por ejemplo, los científicos continúan investigando la naturaleza exacta de la transición entre el núcleo externo líquido y el núcleo interno sólido, así como los mecanismos que impulsan la convección en el núcleo externo y la generación del campo magnético.

Además, el estudio del núcleo también plantea desafíos técnicos y logísticos, ya que las profundidades involucradas son extremadamente grandes y las condiciones de presión y temperatura son difíciles de replicar en laboratorios terrestres.

A pesar de estas dificultades, la exploración del núcleo terrestre sigue siendo una prioridad para los geofísicos y los científicos planetarios, ya que comprender esta región clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.

EL MANTO: LA CAPA INTERMEDIA EN EBULLICIÓN

El manto es una vasta región que se extiende desde la base de la corteza terrestre hasta el núcleo externo, abarcando aproximadamente el 84% del volumen total del planeta [1]. Esta capa intermedia, compuesta principalmente de silicatos ricos en hierro y magnesio, se encuentra en un estado plástico y dinámico, siendo el escenario de procesos fundamentales que moldean la superficie terrestre.

a)     Estructura y composición del manto

El manto se divide en dos regiones principales: el manto superior y el manto inferior, separados por una discontinuidad de fase a una profundidad aproximada de 660 kilómetros. Esta discontinuidad se debe a cambios en las propiedades físicas y químicas de los materiales que componen el manto.

El manto superior, que se extiende desde la base de la corteza hasta una profundidad de aproximadamente 660 kilómetros, está compuesto principalmente de olivino y piroxeno ricos en magnesio y hierro. Esta región es relativamente más fría y rígida en comparación con el manto inferior.

Por otro lado, el manto inferior, que se extiende desde los 660 kilómetros hasta la base del manto a una profundidad de aproximadamente 2.900 kilómetros, está compuesto principalmente de silicatos de magnesio y hierro con estructuras cristalinas más densas, como la perovskita y la ferropericlasa. Esta región es más caliente y fluida que el manto superior.

b)     Convección y dinámica del manto

Una de las características más importantes del manto es su comportamiento convectivo, impulsado por el calor interno del planeta y las diferencias de densidad dentro de la capa. Este proceso de convección, en el cual el material caliente asciende y el material más frío desciende, es responsable de la tectónica de placas, uno de los procesos geológicos más importantes de la Tierra.

La convección en el manto genera una deformación lenta pero continua, que se manifiesta en la formación de cordilleras montañosas, la actividad volcánica y los terremotos en las zonas de subducción y divergencia de las placas tectónicas. Además, la convección también influye en la generación del campo magnético terrestre a través de su interacción con el núcleo externo líquido.

c)      Propiedades físicas y químicas del manto

El manto presenta una gran variedad de propiedades físicas y químicas que influyen en su comportamiento dinámico. Una de las propiedades más importantes es la reología, que describe cómo los materiales del manto responden a las tensiones y deformaciones a largo plazo.

El manto superior tiene un comportamiento más rígido y frágil, lo que resulta en la formación de fallas y deformaciones frágiles en esta región. Por otro lado, el manto inferior exhibe un comportamiento más dúctil y fluido debido a las altas temperaturas y presiones presentes a esas profundidades.

Además, el manto tiene una alta conductividad térmica, lo que facilita la transferencia de calor desde el núcleo externo hacia la superficie terrestre. Esta transferencia de calor es fundamental para impulsar la convección y mantener activos los procesos tectónicos en la superficie.

d)     Investigación y métodos de estudio

El estudio del manto terrestre implica una combinación de técnicas y enfoques, incluyendo la sismología, la geodesia, la geoquímica y los modelos computacionales. La sismología, en particular, ha sido clave para comprender la estructura y composición del manto al analizar la propagación de las ondas sísmicas generadas por terremotos y explosiones.

Otra técnica importante es el estudio de los xenolitos, que son fragmentos de roca del manto superior transportados hasta la superficie por erupciones volcánicas. El análisis de estos xenolitos ha proporcionado información valiosa sobre la composición mineral y química del manto superior.

Además, los avances en la geodesia, como el uso de satélites y mediciones de gravedad, han permitido obtener información sobre la distribución de masas y la dinámica del manto a escalas regionales y globales.

e)     Implicaciones y desafíos futuros

El estudio del manto tiene implicaciones fundamentales para nuestra comprensión de la dinámica interna de la Tierra, la tectónica de placas, la actividad volcánica y la evolución del campo magnético terrestre. Además, el manto desempeña un papel crucial en los ciclos geoquímicos del planeta, influyendo en la composición de la corteza y la atmósfera.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno al manto. Por ejemplo, los científicos continúan investigando los mecanismos exactos que impulsan la convección en el manto y su interacción con el núcleo externo líquido.

Además, el estudio del manto también plantea desafíos técnicos y logísticos, ya que las profundidades involucradas son extremadamente grandes y las condiciones de presión y temperatura son difíciles de replicar en laboratorios terrestres. Los avances en las técnicas de experimentación a altas presiones y temperaturas, así como en los modelos computacionales, serán fundamentales para mejorar nuestra comprensión del manto en el futuro.

A pesar de estas dificultades, la exploración del manto terrestre sigue siendo una prioridad para los geofísicos y los científicos planetarios, ya que comprender esta región clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.


LA CORTEZA: LA DELGADA CAPA EXTERIOR

La corteza terrestre es la capa más externa y delgada de nuestro planeta, pero desempeña un papel fundamental en la dinámica geológica y en el sostén de la vida en la superficie. A pesar de su relativa delgadez, la corteza exhibe una gran diversidad en términos de composición, estructura y procesos que la moldean.

a)     Estructura y composición de la corteza

La corteza terrestre se divide en dos tipos principales: la corteza continental y la corteza oceánica. Estas dos variedades difieren significativamente en su composición química, espesor y propiedades físicas.

La corteza continental tiene un espesor promedio de aproximadamente 35 kilómetros, aunque puede alcanzar espesores de hasta 70 kilómetros en algunas regiones montañosas. Está compuesta principalmente de rocas graníticas ricas en sílice (SiO2) y aluminio, con una composición química promedio similar a la de las rocas ígneas félsicas.

Por otro lado, la corteza oceánica es mucho más delgada, con un espesor promedio de solo 6 a 7 kilómetros. Está formada principalmente por rocas basálticas más densas y ricas en hierro y magnesio, con una composición química similar a la de las rocas ígneas máficas.

Estas diferencias en la composición química y mineral de la corteza tienen implicaciones significativas en su densidad, comportamiento reológico y procesos geológicos asociados, como la formación de montañas, la actividad volcánica y la deformación tectónica.

 

b)     Formación y evolución de la corteza

La formación y evolución de la corteza terrestre están estrechamente vinculadas a los procesos de tectónica de placas y al ciclo de las rocas. La corteza oceánica se forma continuamente en las dorsales oceánicas, donde el magma basáltico asciende y se solidifica para formar nueva corteza oceánica. A medida que las placas tectónicas se alejan de las dorsales, la corteza oceánica se enfría y se vuelve más densa, hundiéndose eventualmente en las zonas de subducción.

Por otro lado, la corteza continental es mucho más antigua y se ha formado a través de una combinación de procesos, incluyendo la fusión parcial del manto, la acreción de arcos volcánicos y la colisión y amalgamación de terrenos tectónicos.  La corteza continental es relativamente más ligera que la corteza oceánica y, por lo tanto, tiende a flotar sobre el manto, evitando ser reciclada en las zonas de subducción.

c)      Propiedades físicas y químicas de la corteza

La corteza terrestre exhibe una amplia gama de propiedades físicas y químicas que influyen en su comportamiento y en los procesos geológicos que ocurren en ella. Una propiedad clave es la reología, que describe cómo las rocas de la corteza responden a las tensiones y deformaciones a largo plazo.

La corteza continental superior tiende a ser más rígida y frágil, lo que resulta en la formación de fallas y estructuras de deformación frágiles. Por otro lado, la corteza inferior y la corteza oceánica exhiben un comportamiento más dúctil y fluido debido a las altas temperaturas y presiones presentes a esas profundidades.

Además, la corteza tiene una baja conductividad térmica en comparación con el manto subyacente, lo que influye en la transferencia de calor desde el interior del planeta hacia la superficie. Esta transferencia de calor es fundamental para impulsar procesos como el vulcanismo y la actividad hidrotermal.

d)     Investigación y métodos de estudio

El estudio de la corteza terrestre implica una combinación de técnicas y enfoques, incluyendo la geología de campo, la sismología, la geoquímica y los métodos de prospección geofísica. La geología de campo proporciona observaciones directas de las rocas y estructuras de la corteza, mientras que la sismología permite inferir su estructura interna y composición al analizar la propagación de las ondas sísmicas.

La geoquímica, por su parte, involucra el análisis de la composición química e isotópica de las rocas y minerales de la corteza, lo que proporciona información sobre su origen y evolución. Además, los métodos de prospección geofísica, como la gravimetría y la magnetometría, permiten mapear las variaciones en la densidad y las propiedades magnéticas de la corteza, respectivamente.

e)     Implicaciones y desafíos futuros

El estudio de la corteza terrestre tiene implicaciones fundamentales para nuestra comprensión de la evolución geológica del planeta, la formación de recursos minerales, la evaluación de riesgos naturales y la exploración de recursos energéticos. Además, la corteza desempeña un papel crucial en el ciclo del agua y en el sostén de la vida en la superficie terrestre.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno a la corteza. Por ejemplo, los científicos continúan investigando los mecanismos exactos que controlan la formación y evolución de la corteza continental, así como los procesos que dan lugar a las diferencias entre la corteza continental y oceánica.

Además, el estudio de la corteza también plantea desafíos técnicos y logísticos, ya que su accesibilidad está limitada por su profundidad y la complejidad de las estructuras geológicas. Los avances en las técnicas de perforación profunda, la sismología de alta resolución y los métodos de prospección geofísica serán fundamentales para mejorar nuestra comprensión de la corteza en el futuro.

A pesar de estas dificultades, la exploración de la corteza terrestre sigue siendo una prioridad para los geólogos y geofísicos, ya que comprender esta capa clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.

 

MÉTODOS DE INVESTIGACIÓN: REVELANDO LOS SECRETOS DEL INTERIOR TERRESTRE

Para explorar la composición interna del planeta, los geofísicos emplean una variedad de técnicas y enfoques, cada uno de los cuales aporta información valiosa sobre diferentes aspectos del interior de la Tierra.

Sismología: El estudio de las ondas sísmicas generadas por terremotos y explosiones ha sido fundamental para comprender la estructura interna del planeta. Al analizar cómo se propagan estas ondas a través de los diferentes materiales, los sismólogos pueden inferir la composición y las propiedades físicas de las capas internas de la Tierra.

Geodesia: Esta disciplina se encarga de estudiar la forma, las dimensiones y el campo gravitacional de la Tierra. Mediante el análisis de las variaciones en la gravedad y el movimiento de satélites, los geodesistas pueden obtener información sobre la distribución de masas en el interior del planeta y las deformaciones de la superficie terrestre.

Geomagnetismo: El estudio del campo magnético terrestre y sus variaciones proporciona pistas sobre la naturaleza del núcleo externo líquido y los procesos dinámicos que ocurren en su interior.

Geoquímica: El análisis de la composición química e isotópica de las rocas y minerales, tanto en la superficie como en muestras obtenidas mediante perforaciones profundas, aporta información valiosa sobre los procesos de formación y evolución de los materiales que conforman el interior de la Tierra.

Exploraciones directas: Aunque limitadas en profundidad, las perforaciones profundas y los estudios de xenolitos (fragmentos de roca del manto superior transportados hasta la superficie por erupciones volcánicas) han proporcionado muestras físicas del interior terrestre para su análisis en laboratorio.

Estas técnicas, junto con el desarrollo de modelos computacionales avanzados y la integración de datos de múltiples fuentes, han permitido a los geofísicos construir una imagen cada vez más detallada y precisa de la composición y estructura interna de nuestro planeta.

 


GEOFÍSICA - PROSPECCIÓN GEOFÍSICA

Campo magnético de la Tierra.
Según estudios magistrales en física y descubrimientos por grandes científicos, nuestro planeta Tierra está conformado por campos naturales que coexisten entre sí y que están asociados a la Tierra.  Estos campos al estudiarlos, nos permiten entender el comportamiento de nuestro planeta, así mismo, nos ayuda a analizar algunas características físicas de nuestro planeta. Los campos naturales que existen son el campo magnético, gravitatorio y el potencial natural. Este último lo podemos observar debido a las formaciones geológicas que componen nuestra corteza terrestre.

Cuando hacemos estudios en Prospección Eléctrica estudiamos también el potencial natural del subsuelo, ello nos permite conocer si existe en la zona algún cuerpo geológico o zona mineralizada que esté alterando el campo natural en un determinado punto y/o área. Cuando no existe algún tipo de perturbación en una determinada área por lo general encontraremos valores de diferencia de potencial similares, cuya diferencia no es tan pronunciada, esto debido también a que el subsuelo es heterogéneo. En cambio, cuando en la zona existe algún cuerpo o existe mineralización, el potencial natural de esa zona variará con respecto a otros puntos de dicha zona, la cual nos da un indicio de que existe algo que está perturbando el campo potencial natural de nuestra área de estudio. El campo de potencial natural lo podemos medir con voltímetros.

Uno de los campos naturales más importantes de nuestro planeta es el campo magnético. Estos campos los podemos medir con ayuda de instrumentos llamados magnetómetros. Las líneas de fuerza del campo magnético recorren toda la superficie de nuestro planeta, así que, podemos medir su valor en cualquier punto de la Tierra. Este campo natural se origina desde el núcleo de la Tierra, debido al movimiento de fluido existente en el núcleo externo, los metales y materiales friccionan entre sí generando el campo magnético que envuelve a toda a Tierra, y el responsable de protegernos de las diversas radiaciones provenientes del espacio exterior. De igual manera que con el campo potencial natural, el campo magnético toma valores similares en diversos puntos equidistantes, no siendo el caso cuando existe algún cuerpo mineralizado que altera en determinado punto el campo magnético, a este valor se le agregará una determinada magnitud al valor promedio del campo magnético de una línea base creada con anterioridad. La Prospección Magnética se encarga de estudiar esto mismo. 

Otro de los campos naturales importantes de nuestro planeta es el campo gravitatorio. Específicamente al referirnos cuando aplicamos Prospección Gravimétrica en un determinado estudio. La prospección gravimétrica hace referencia a la gravedad en un punto específico en un área determinada. Esto quiere decir, que en un punto específico está presente la gravedad que en condiciones normales, como en los demás campos, al no existir un cuerpo geológico que altere el campo gravitatorio por medio de la densidad de su masa, mostrará valores gravitatorios normales, es decir sin alteraciones. Caso contrario, al existir un cuerpo extraño en profundidad, éste debido a su masa y a su densidad cambiará las propiedades físicas de ese punto, y por ende el valor de la gravedad en ese punto variará en relación a su valor medio de la zona de estudio.  Esta diferencia en el campo gravitatorio es observable de manera cualitativa cuando elaboramos perfiles gravimétricos. En el gráfico, mostraremos la curva normal de los valores de gravedad y la curva con los datos enviados por el equipo con su data alterada por el cuerpo geológico mostrándonos claramente que existe un cuerpo extraño que altera los valores registrados del campo gravitatorio. La forma de medir estos valores del campo gravitatorio es con la ayuda de equipos gravimétricos, que se encargan de recoger los valores de un determinado punto.

Estos son al menos los campos naturales más importantes que se estudian actualmente.

GEOFÍSICA + GEOTERMIA


La Tierra, un planeta dinámico desde hace miles de años, nos ha demostrado su actividad y su energía a través de diferentes manifestaciones físicas como terremotos, erupciones volcánicas o por el movimiento de sus placas tectónicas. Todas estas manifestaciones tienen su origen desde el interior de nuestro planeta. A varios cientos de kilómetros de profundidad, la Tierra es un planeta caliente que se encuentra en movimiento debido a las altas presiones y temperaturas en su interior, va transmitiendo calor a través de los diferentes materiales y medios circundantes hasta llegar a la Litosfera donde se va enfriándose gradualmente. ¿Pero cómo se transmite el calor del interior de la Tierra?

El globo terrestre está compuesto por rocas, metales y elementos químicos que conforman la geoesfera, dividida en tres capas principales. La corteza que mide aproximadamente 70 kilómetros; el manto (el estrato intermedio) que está formado por rocas en estado semisólido y líquido y tiene un espesor de 3.000 km y, por último, la capa más profunda, el núcleo donde se registran las presiones y temperaturas más altas de la Tierra, de hasta 6.000 grados centígrados.

Cuando se formó el Planeta, la corteza terrestre se fue enfriando hasta solidificarse. No obstante, las capas inferiores no lo hicieron tan rápidamente ya que la corteza funciona como aislante, permitiendo que el manto y el núcleo mantengan sus altas temperaturas. De esta manera, la Tierra funciona como una gran máquina térmica, capaz de generar su propio calor y conservarlo en el interior del globo. (1)

Pero el calor que se concentra en su interior no es estático sino, se encuentra activamente en movimiento transmitiéndose desde el núcleo al manto de diferentes maneras. Las formas en la que se transmite el calor de la Tierra son por conducción, convección y radiación. Sin embargo, los tres tienen diferente grado de importancia en las diferentes capas de la Tierra: en la corteza el principal medio de transporte de calor es la conducción mientras que en el manto lo es la convección y radiación.

La conducción es la forma como se transporta el calor de un cuerpo más caliente a uno más frío con el cual se encuentra en contacto. La eficiencia de ésta depende de una propiedad de los materiales que se llama conductividad térmica y que nos dice cuál será la diferencia de temperatura provocada por un flujo de calor: a mayor conductividad menor será la diferencia de temperatura a través del material. Un ejemplo de buen conductor lo es una barra de metal, la cual al ser calentada en uno de sus extremos inmediatamente conducirá el calor hasta el otro extremo. Por otro lado, un ejemplo de mal conductor lo sería la madera, la cerámica y el aire.

La convección es un proceso un poco más complejo que se da solamente en fluidos (líquidos y gases). Al ser calentada la parte inferior de un fluido, ésta se expandirá y se volverá menos densa que la parte superior más fría, por lo cual tenderá a subir, con lo que la parte fría quedará ahora en contacto con la fuente de calor repitiéndose de esta forma el proceso y dando origen a lo que se llama celdas de convección, en las cuales existen corrientes ascendentes y descendentes. Este mecanismo se va a generar a partir de un cierto valor de la diferencia de temperatura y depende de la viscosidad y densidad del fluido.

La radiación es una forma de transporte de calor que es importante a temperaturas altas; en realidad todos los cuerpos que tienen temperatura por arriba del cero absoluto (cero grados Kelvin o -273.15°C) emiten radiación, pero la frecuencia de la radiación emitida es proporcional a la temperatura del material: los seres humanos emitimos radiación en el infrarrojo y un trozo de hierro calentado a temperaturas muy altas empezará a emitir en el espectro visible.

De esta forma observamos que el transporte de calor en el interior de la Tierra va a depender de la temperatura y de las características del material. La corteza se comporta como un sólido y tiene temperaturas relativamente bajas. El manto se comporta como un fluido y como la convección es mucho más eficiente en este caso, ése es el principal medio de transporte, aun cuando las temperaturas relativamente altas hacen posible que la energía también se transporte por medio de la radiación. (2)

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica

REFERENCIAS BIBLIOGRAFICAS
(1) https://www.sostenibilidadedp.es/pages/index/el-calor-de-la-tierra
(2) http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen2/ciencia3/058/htm/sec_4.htm

TAMBIÉN TE INTERESARÁ
Monitoreo Geofísico | Alfred Wegener. ¿Geofisico o Geologo? | Software Geofísico | La Geofísica y las Matemáticas | Desastres naturales y desastres geofísicos | Existencia de ondas gravitacionales | ¿Cómo se transmite el calor interno de la Tierra? | Desarrollo de magma | Monitoreo Geofísico
GEOFISICA

Esquematización de Ondas Gravitacionales
En unas publicaciones anteriores siempre he comentado que nuestro planeta aun existen misterios por resolver y analizar profundamente.  El universo no escapa a ello, ya que si apenas el ser humano puede entender lo que sucede en nuestro planeta, con el universo recién tenemos los conocimientos actuales en su etapa inicial.

El ser humano se ha interesado a mediados del siglo pasado hasta el presente, en el estudio y análisis de las ondas en sus diversas formas (ondas mecánicas, ondas copulares, etc.) y actualmente en las ondas gravitacionales predichas por el científico alemán Albert Einstein hace ya más de 100 años. Hasta hace algunos años atrás los científicos no creían en la existencia de las ondas gravitacionales debido a que no la podían demostrar científicamente y no tenían evidencias físicas reales o registradas de este tipo de ondas

Este contenido está ampliamente divulgado en internet por lo que nuestro blog realizara un análisis y que intentaremos en el futuro investigar si las ondas gravitacionales tienen o no alguna relación con la geofísica actual.

Las ondas gravitacionales no se pueden percibir directamente como lo podemos hacer con las ondas mecánicas que las podemos sentir y visualizar. A diferencias de estas, las ondas gravitacionales las podemos registrar realizando medidas en el espacio-tiempo. ¿Cómo así?

 En forma clásica usando la luz como medio natural para estas mediciones. La luz recorre cierta distancia a una determinada velocidad y cuando existen cambios en el espacio-tiempo la diferencia en la distancia recorrida de la luz nos indicará la presencia de las ondas gravitacionales que pasaron en ese punto.

¿Qué tiene que ver el espacio-tiempo con las ondas gravitacionales?

La generación de las ondas gravitacionales se da en la dimensión del espacio-tiempo, lo que vendría a ser el universo en sí. Esta idea la tenía Albert Einstein al analizar la curvatura del espacio tiempo debido a cuerpos super masivos, es decir, que tienen una masa muy enorme en el universo. La generación de las ondas gravitacionales se da por el movimiento de estos cuerpos super masivos en el universo logrando de esta manera la generación de ondas debido a este movimiento. Una hipótesis para tratar de entender este fenómeno físico es que hay que partir de la idea de la materialización del espacio tiempo.

Imaginemos que el espacio tiempo es como una superficie y que cuando un cuerpo super masivo se encuentra en ella, curva la superficie del espacio tiempo modificando sus propiedades físicas en el entorno del cuerpo super masivo, es así que podríamos dar como hipótesis el origen de la gravedad de los cuerpos que poseen masa, claro está que habría de analizar esta suposición que no está nada lejos de la realidad.

Como los cuerpos se encuentran en movimiento y poseen una gran masa van generando ondas en la dimensión del espacio-tiempo, es así que estas ondas gravitacionales se trasladan por el universo expandiéndola y comprimiéndola por la que algún momento llegan a nuestro planeta sin ninguna percepción física. Probablemente algún tipo de manifestación podría deberse a que tenemos la sensación de que los días presentan un periodo más corto, es decir, percibimos que el tiempo se hace más corto de lo normal, caso contrario a como lo percibíamos hace varios años atrás.

Existe eventualmente un laboratorio que se encarga de realizar medidas de las distancias que recorre la luz para poder registrar la variaciones de las distancias y lograr de esta manera un registro también de la existencia de alguna onda gravitacional que arribó a ese laboratorio.

Particularmente Albert Einstein tenía razón en sus análisis de la relatividad, la presencia de las ondas gravitacionales. Solo faltaría una adecuada forma de estudiarlas y comprenderlas mejor, cuáles podrían ser sus aplicaciones o tal vez analizar la manera en que forma podrían beneficiar al ser humano.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31 
OTROS TAMBIÉN ESTÁN LEENDO
Terremotos creadores de islas | Geofísica y qué es eso | Ley de Omori | Laboratorio Geofísico Subterráneo | Buscando el origen del universo | Cómo se llegó a conocer el interior de la Tierra | Tubos gigantes de plasma | Teoría sísmica actual es una mentira | Relación entre el campo magnético y el movimiento interno de la Tierra

GEOFISICA

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la  Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o electricos." - Ciencia y Geofísica

"Los vulcanólogos visitan frecuentemente los volcanes, en especial los que están activos, para observar las erupciones volcánicas, recoger restos volcánicos como la tephra (ceniza o piedra pómez), rocas y muestras de lava." - Wikipedia


Nuestro planeta, como siempre lo hemos mencionado, es un cuerpo dinámico, el cual siempre se mantiene en movimiento, ya sea externo como interno, el material fundido dentro de nuestro planeta con sus movimientos de convección, hacen que las placas tectónicas se desplazen creando fricciones con otras placas tectónicas, creando al mismo tiempo actividad volcánica de diferente tipo y creando diferentes formas de volcanes con diferentes mecanismos eruptivos. La mayoría de ellos siempre estan en actividad.

Esa actividad la que podemos apreciar en diferentes lugares del globo terráqueo, nos da la evidencia física que nuestro planeta se encuentra en constante dinámica, liberando presión y energía de diferentes formas e intensidades.
Lo información básica sobre la que tenemos que tener siempre presente al estudiar volcanes activos es la siguiente:

1. Los volcanes activos son aquellos que pueden entrar en actividad eruptiva en cualquier momento, es decir, permanecen en estado de latencia. Esto ocurre con la mayoría de los volcanes, ocasionalmente entran en actividad y permanecen en reposo la mayor parte del tiempo. El período de actividad eruptiva puede durar desde una hora hasta varios años. (1)

2. Un volcán en actividad puede arrojar a la atmosfera o a la superficie varios tipos de materiales, tales como cenizas, material volcánicos como piedra pomez,  proyectiles volcánicos (fragmentos de roca que se encuentran al interior del volcan), lava, flujos piroclásticos (cuando se produce la erupción), gases como dióxido de azufre entre otros.

3. Los volcanes activos se encuentran constantemente liberando presión y energía, los cuales pueden ser registrados por los sismogramas instalados en los volcanes, los que que se llaman movimientos volcano-tectonicos.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31

REFERENCIAS BIBLIOGRAFICAS

(1) https://es.wikipedia.org/wiki/Volcán#Tipos_de_volcanes_seg.C3.BAn_su_actividad


GEOFISICA
Versión en Español | Inglés | Portugués | Italiano


Nuestro planeta es un lugar dinámico y activo. Actualmente todos los días ocurren sismos y/o terremotos en diferentes lugares del planeta con diferentes periodos de tiempo, intensidad o aceleraciones. Pero gracias al avance de la ciencia actualmente disponemos de herramientas que nos ayudan a estudiar y comprender mejor estos tipos de fenómenos naturales, o que en todo caso, inducidos por el hombre.

Los sismogramas son los medios por los que los científicos y geofísicos analizan los arrivos de las ondas sísmicas a las estaciones donde se ubican los sismómetros registrando continuamente estas señales para posteriormente determinar en que lugar del planeta ocurrió el evento sísmico.

Para esto, entonces debemos tener clara la idea de qué son los sismogramas y para qué nos pueden servir y cómo los podemos utilizar para discutir los análisis, estudios o interpretaciones de un evento sísmico dado. He aquí algunos conceptos e ideas de los sismogramas que todo geofísico debe tener siempre presente:

1. Los sismogramas registran el movimiento natural o artificial del suelo.

Es natural que nuestro planeta esté en movimiento debido a la deriva continental de las placas tectónicas sobre la astenósfera (en estudio), los roces y/o fricciones entre el material circundante, el fracturamiento de los materiales liberan energía de diferentes formas, siendo una de ellas energía mecánica produciendo oscilaciones en el material. Las velocidades con la que las oscilaciones viajan a través del medio varían arrivando a las diferentes estaciones sísmicas. Los sismómetros registran estas oscilaciones por lo que pueden ser vistas en los sismogramas.

2. Los sismómetros presentan dos componentes horizontales y un vertical.

Para determinar la correcta localización del arrivo de las ondas sísmicas a la estación sísmica, el sismómetro registra la señal en sus dos componentes horizontales, una de dirección norte-sur (N-S) y la otra en dirección este-oeste (E-W). Además de una tercera dirección la que es vertical (down-up).

Esto con la finalidad de determinar la correcta velocidad de las ondas sísmicas y de poder localizar adecuadamente la ubicación del hipocentro del sismo.

3. Con los sismogramas se puede visualizar el arrivo de las ondas sísmicas.

Las ondas sísmicas por lo general pueden ser de de dos tipos, las corpóreas o de cuerpo ( las ondas P y S) y las ondas superficiales (love o rayleigh ). La primera onda en ser registrada es la P porque posee una mayor velocidad que la onda S que es la segunda en arrivar, posteriormente y en forma conjunta las ondas superficiales.

4. Tipos de sismogramas de acuerdo al tipo de evento sísmico.

Existen diferentes formas de visualizaciones de los sismogramas que registran los sismómetros, y cada una de ellas variará de acuerdo al tipo de evento sísmico ocurrido.

Existen sismogramas para eventos locales, regionales, telesismicos, explosiones nucleares, megaterremotos, tremores volcánicos, sismo volcánicos. Todos estos tipos de señales tienen sus características propias ayudándonos a determinar qué tipo de evento sísmico ocurrió en un determinado lugar. (Analizados en la sección de sismología)

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31

GEOFISICA

"Un tremor es un tipo de terremoto característico de los volcanes, causado por el movimiento del magma." - Wikipedia

Descarga este contenido en mp3 | wav a tu PC o móvil.

Como lo pudimos comentar antes, nuestro planeta está cambiando severamente. En esta ocasión, la temperatura media global se encuentra en aumento, y todo al parecer debido al calentamiento global existente en nuestro planeta. Y aunque algunos no lo quieran admitir es un hecho innegable, el cual podemos demostrar por medio de gráficos estadísticos brindados por la NOAA. (1)

En este gráfico se puede observar claramente la tendencia de las temperaturas máximas medias globales de todos los meses de Octubre y que a partir del año 1980 va en aumento. Este gráfico es de temperaturas globales medias totales de la Tierra.


En este gráfico se puede observar claramente la tendencia de las temperaturas máximas medias globales de todos los meses de Octubre y que entre los años 1950 y 1960 comienza y va en aumento. Este gráfico es de temperaturas globales de la superficie oceánica.


En este gráfico se puede observar claramente la tendencia de las temperaturas máximas medias globales de todos los meses de Octubre y que a partir del año 1980 va en aumento. Este gráfico es de temperaturas globales de la superficie terrestre.

Se puede afirmar el mes de Octubre también fue uno de los  meses más calurosos y de mayor temperatura registrados de toda la historia, al menos eso dicen las estadísticas, acerca de las temperaturas medias globales.

Puedes descargar estas bases de datos directamente desde aquí.

ciencia_geofisica_anomalia_temperatura_global_oceano_octubre (CSV)

Descarga este contenido en mp3 | wav a tu PC o móvil.

REFERENCIAS BIBLIOGRÁFICAS

(1) http://www.ncdc.noaa.gov/cag/time-series/global/globe/land_ocean/ytd/10/1880-2014
GEOFISICA + CIENCIA

Nuestro mundo siempre será hasta sus ultimos días un planeta dinámico como lo mencionamos en otros post de este blog, uno de esos tantos ejemplos son que en nuestro planeta existen los terremotos causados por ondas sísmicas cuando existe fracturamiento o sizallamiento entre las placas tectónicas o fallas geológicas, liberando hacia la superficie la energía suficiente para poder provocar daños.

Pero ¿Crees que solo en nuestro planeta existe esa dinámica? Por supuesto que no. Todo el universo en sí se encuentra en movimiento, por lo cual tiene su dinamismo propio y  característico. Existen explosiones solares, impacto de asteroides, cambios en los campos magnéticos de cuerpos celestes o simplemente impactos de masas coronarias o plasma solar provenientes de nuestra estrella hacia nuestro planeta y/o otras direcciones en el espacio.

Entonces, si existe el dinamismo en el universo, ¿habrán sismos o terremotos en el espacio?

Imagen recreativa de un Magnetar.
En el año 2009 astrónomos pudieron descubrir señales sísmicas subyacentes en una gran explosión en un magnetar mediante el telescopio espacial de rayos X Fermi de la NASA. Dichas señales se identificaron por primera vez durante el desvanecimiento de raras erupciones gigantes producidas por estos magnetares. (1)

¿Y qué es un Magnetar? ¿Y cómo generan éstas señales sísmicas?

Los magnetares no son más que estrellas de neutrones que son los objetos más densos, más magnéticos y que giran más rápido por el universo. Cada uno de estas estrellas es el núcleo aplastado de una estrella masiva que se quedó sin combustible, derrumbándose por su propio peso, y explotando como una supernova. Comparándola con la Tierra, una estrella de neutrones tiene la masa equivalente de medio millón de Tierras concentradas en una esfera de unos 12 kilómetros de diámetro.



Estas señales sísmicas se originan, según hipótesis, debido a la gran intensidad y/o reordenamiento del campo magnético de una estrella de neutrones produciendo el fracturamiento de su superficie. Las explosiones y las liberaciones de energía que se producen en la estrella de neutrones hacen que su corteza vibre grabándose en las trazas de los rayos gamma y de rayos X de este telescopio.

Hasta el momento solo se han detectado 23 Magnetares en lo que tenemos de conocimiento del Universo.

Al igual cómo sucede aquí en la Tierra, para que se originen terremotos de gran magnitud, se necesita la acumulación de bastante energía durante el tiempo para que se produzca el evento sísmico. Algo parecido ocurre en los magnetares, al parecer la geofísica de su naturaleza es similar más no igual.

Según Anna Watts, astrofísico de la Universidad de Amsterdam, opinó lo siguiente:  "Creemos que estos son probables oscilaciones de torsión de la estrella donde la corteza y el núcleo, obligado por el campo magnético super-fuerte, están vibrando juntos". (1)

¿Vibrando? El autor de estas vibraciones sería el campo magnético de esa estrella. Comparando a nuestro planeta con esta estrella, ¿podría nuestro campo magnético terrestre producir terremotos o sismos?. La respuesta es obvia, no; esto debido a que nuestro campo magnético es totalmente diferentes al de una estrella de neutrones

¿Pueden existir según la ciencia casos diferentes de sismos en el espacio? Nuestro blog se unirá a este estudio de geofísica espacial y reunirá toda la información necesaria.

REFERENCIAS BIBLIOGRÁFICAS

(1) http://www.europapress.es/ciencia/astronomia/noticia-detectan-ondas-sismicas-gran-explosion-magnetar-20141022132857.html
(2) http://actualidad.rt.com/ciencias/view/144419-nasa-registra-rarisimo-fenomeno-sismo-estelar



GEOFISICA

"La Geodinámica estudia la interacción de esfuerzos y deformaciones en la Tierra que causan movimiento del manto y de la litosfera." - Wikipedia.

En esta oportunidad nos ha tocado comentar sobre el Instituto Geofisico de la Escuela Politécnica Nacional de Ecuador, la cual una de sus componentes es el servicio Nacional de Sismología y Vulcanología.

Visitando su web nos encontramos con un ambiente agradable de navegación donde podemos encontrar varios temas relacionados sobre Sismología y Vulcanología.

Para empezar se encuentra bien organizado con una Presentación, su Misión y Visión, su organización, quienes trabajan en dicha empresa, los servicios que brindan y lo que llamó la atención a nuestro Equipo Técnico la de Oportunidades Laborales, la cual separan un espacio de su web para la contratación de nuevo personal en todas las áreas si se presentara alguna.

Al ingresar a su sitio web lo primero que podemos apreciar es que poseen a primera vista dos mapas correspondientes a los últimos sismos registrados en todo el territorio ecuatoriano indicando claramente la magnitud de cada sismo independientemente hasta un periodo máximo de 90 días.
Luego podemos apreciar un mapa del estado de sus volcanes, si se encuentran en erupción , si se encuentran activos, inactivos o si son potencialmente activos.

Boletines de actualidad, lo que vienen a ser reportes sobre sismos o ultimas actividades volcánicas, para mantenernos al día.

Como se trata de monitoreo de Sismos y Volcanes tiene bien diferenciada sus secciones de Volcanes y Sismos.

En su sección de Volcanes vamos a encontrar:

* En su lista de volcanes de Ecuador podemos encontrar en primera instancia un mapa de todos los volcanes ecuatorianos coloreados según su comportamiento (activos, potencialmente activos, en erupción). Además podemos encontrar una relación de volcanes que monitorizan como el Tungurahua, Sangay, Reventador, entre otros; indicando información de su Ubicación (lat. Long. Elevación) y datos fisiográficos (Tipo de Volcán, Diámetro Basal, etc), su Historia, Geología, Redes de Monitoreo, Informes relacionados y Mapas de Redes.

* El Vulcanismo Ecuatoriano es una sección muy interesante, allí podemos tener información sobre su Geodinámica mostrando claramente un mapa del Arco Volcánico Ecuatoriano y la ubicación de cada uno de los volcanes de ese país.

* Lo que no se puede apreciar con claridad es su sección del Mapa de Volcanes, si es buena mostrando su ubicación y lista de volcanes pero no tanta en la distribución espacial en el mapa en si. Además su imagen es muy pequeña.

* La red de observatorios vulcanológicos presenta una explicación sobre sus diferentes observatorios y para que son cada uno de ellos, nada relevante, mostrándonos la Red de Estaciones para Monitoreo de Gases, Red de Estaciones para Monitoreo de Lahares y la Red de Estaciones para Monitoreo Óptico.

* Llama la atención sobre sus Cámaras de Volcanes donde podremos ver solamente las de tres volcanes, El Tungurahua, Reventador y Cotopaxi. Visualizaremos imágenes estáticas y animaciones de esas imágenes de las cámaras que están instaladas en esos volcanes por el Instituto Geofísico.

*  Su sección de publicaciones nos gustó mucho, además de poder descargarlas gratuitamente sin accesar a cuentas asociadas. Además de poder interactuar con las diferentes redes sociales más populares como Facebook, Twitter y Google+.


make-money-468x60-2
La próxima vez comentaremos sobre su Sección de Sismología. Para ingresar a su sitio web haz clic aquí.
Visita nuestra FanPage en facebook.com/cienciaygeofisica

GEOFÍSICA
Versión en Inglés | Español | Portugués

"La Geodinámica, estudia la interacción de esfuerzos y deformaciones en la Tierra que causan movimiento del manto y de la litosfera." - Wikipedia

Son pocas las empresas que se dedican a estudiar con detenimiento las zonas más frías del planeta, que en este caso, nos estamos refiriendo a los glaciares o nuestros continentes helados.

Resulta útil y necesario estudiar y analizar las variaciones de la superficie de las masa heladas, el espesor del hielo y cómo varían con el tiempo para comprender mejor los cambios que ocurren en nuestro planeta a consecuencia del Calentamiento Global.

¿Pero cómo llegamos a realizar tal estudio? ¿Existe alguna forma, medio o herramienta capaz de realizar dicha campaña?

Prueba del Satélite Cryosat
El Satélite Cryosat es actualmente, hasta el momento, nuestra mejor opción para estudiar y analizar las propiedades físicas de las masas de hielo de nuestro planeta. Este satélite pertenece a la  Agencia Espacial Europea (ESA) la cual posee  tecnología radar diseñada para el estudio de las regiones heladas de la tierra, variaciones e la superficie, espesor del hielo, su masa y como varia ésta con el tiempo (1)

También estuvieron dentro de esta clase de estudios la NASA con su satélite ICESat el cual disponía de un sistema activo de medición por láser para estimar el espesor de las capas de hielo, pero su efectividad estaba limitada por las condiciones meteorológicas en la superficie de la Tierra y por los problemas con su láser.(1)

Para este entonces dicho satélite no se encuentra operando.

El satélite Cryosat transporta un Altímetro de Interferometría Radar SAR, la cual puede medir la superficie del hielo desde el espacio sin ningún inconveniente pudiendo medir y monitorizar los cambios en el espesor del hielo marino con una precisión de unos centímetros de las capas de hielo de Groenlandia y la Antártida

¿Y cómo funciona el Altímetro de Interferometría Radar?

Este instrumento puede enviar miles de pulsos radar hacia la superficie de la Tierra cada segundo, midiendo con precisión el tiempo que tarda en recibir los ecos de retorno.

Ya que la posición del satélite en el espacio es conocida, se puede trazar un mapa de la superficie del hielo a escala global con una precisión de unos pocos centímetros.

Para medir la altura de la superficie de hielo, el satélite Cryosat, posee un Sistema Doppler de Orbitografía y Radiolocalización Integrada por Satélite, la cual permite detectar y medir el efecto Doppler en las señales emitidas por una red de radiobalizas situadas en diferentes puntos del mundo, lo que permite determinar con precisión la órbita del satélite. Pudiendo así medir la altura de la superficie del hielo.

Lo curioso de este satélite es que tiene un peso de 700 Kg y orbita sobre la Tierra a unos 700 Km.

Conocer la dinámica de las masas de hielo nos ayuda a comprender el impacto que tiene el calentamiento global sobre estas regiones heladas del planeta

Actualmente este satélite ayudó a determinar que la región de la Antártida y Groenlandia pierde aproximadamente un promedio de 500 km cúbicos de hielo al año debido al cambio climático, según lo que puede informar la Agencia Espacial Europea.

En un comunicado se reveló que entre enero de 2011 y enero del 2014 Groenlandia reduce su manto de hielo en unos 375 km cúbicos de hielo al año.

¿Que mencionó la Agencia Espacial Europea?

"Es importante evaluar como está cambiando la superficie elevada y el grosor del hielo en Groenlandia para comprender como contribuyen al aumento del nivel del mar" (2)

Se supone que debería de haber un equilibrio natural en el planeta, o en todo caso en nuestras regiones heladas, ya que cuando se pierde volumen de hielo por medio de  las descargas de masas del mismo al océano se gana masa de hielo cuando ocurren las nevadas; pero la realidad es otra.

"El manto occidental de la Antártida y la península de la Antártida, muy al oeste, está perdiendo volumen rápidamente. Sin embargo, la parte oriental de la Antártida está ganando volumen, aunque a una tasa moderada que no compensa las pérdidas de las otras partes del continente" - Angelika Humbert, miembro de investigación.

Todo tiene que tener una explicación. ¿Porqué este desequilibrio? La respuesta es obvia el Calentamiento
Global.

¿Y la Geofísica tiene algo que ver con todo ésto? Claro que sí. En el estudio de glaciares.

Gracias a este satélite nos permite saber la realidad de nuestras regiones heladas y darnos cuenta del delgado equilibrio que tiene nuestro planeta con los seres humanos. ¿Tu que crees?

REFERENCIAS BIBLIOGRÁFICAS

(1) http://es.wikipedia.org/wiki/Sat%C3%A9lite_CryoSat-2
(2) http://www.rcnradio.com/noticias/el-satelite-cryosat-muestra-que-la-antartida-pierde-500-km3-de-hielo-al-ano-156698