Contacto : cgeofisica@gmail.com

Ciencia y Geofísica

Grupo IGPERU

Ciencia y Geofísica

facebook
instagram
linkein
whatsapp

EL PAPEL CRUCIAL DE LA INTELIGENCIA ARTIFICIAL EN EL ACONDICIONAMIENTO DE DATOS SÍSMICOS

En la industria del petróleo y gas, así como en la exploración geológica, la obtención de datos sísmicos de alta calidad es fundamental para una interpretación precisa de la estructura y composición del subsuelo. Sin embargo, los datos sísmicos crudos a menudo se ven afectados por una variedad de fuentes de ruido y artefactos que pueden enmascarar o distorsionar las señales de interés. Es en este punto donde el acondicionamiento de datos sísmicos, el proceso de eliminación de ruido y corrección de imperfecciones, se vuelve crucial. Tradicionalmente, este proceso se ha realizado mediante técnicas de procesamiento de señales y filtrado basadas en reglas y ecuaciones predefinidas. No obstante, actualmente, la Inteligencia Artificial (IA) está surgiendo como una herramienta poderosa para mejorar y automatizar el acondicionamiento de datos sísmicos, brindando nuevas oportunidades para una calidad de datos superior y una interpretación más precisa.

FUENTES DE RUIDO Y ARTEFACTOS EN DATOS SÍSMICOS

Antes de abordar el papel de la IA en el acondicionamiento de datos sísmicos, es importante comprender las diversas fuentes de ruido y artefactos que pueden afectar los datos crudos.

Algunas de las fuentes más comunes incluyen:

Ruido Ambiental: Causado por actividades humanas, como el tráfico, la maquinaria industrial o las construcciones cercanas, así como por fenómenos naturales como el viento, la lluvia o las olas.

Ruido Instrumental: Generado por los propios dispositivos de adquisición sísmica, como los geófonos o los hidrófonos, debido a problemas electrónicos, interferencia electromagnética o calibración inadecuada.

Múltiples: Reflexiones sísmicas que se propagan por trayectorias más largas y se superponen con las señales de interés, creando artefactos y confusión en los datos.

Efectos de Propagación: Distorsiones causadas por la propagación de las ondas sísmicas a través de medios heterogéneos y complejos, como la amortiguación, la dispersión y la difracción.

Artefactos de Adquisición: Problemas relacionados con la geometría de la adquisición, como trazas faltantes, respuesta de offset variable o errores de posicionamiento.

Estas fuentes de ruido y artefactos pueden enmascarar características geológicas importantes, dificultar la interpretación y conducir a decisiones erróneas en la exploración y explotación de recursos. Por lo tanto, el acondicionamiento de datos sísmicos es un paso crítico que debe abordarse de manera efectiva.

ENFOQUES TRADICIONALES DE ACONDICIONAMIENTO DE DATOS

Históricamente, el acondicionamiento de datos sísmicos se ha realizado mediante técnicas de procesamiento de señales y filtrado basadas en reglas y ecuaciones predefinidas. Algunas de estas técnicas incluyen:

Filtrado de Frecuencia: Eliminación de componentes de frecuencia no deseados mediante filtros de paso bajo, paso alto o paso banda.

Deconvolución: Proceso para eliminar efectos de propagación y recuperar la forma de onda original.

Sustracción de Múltiples: Identificación y eliminación de múltiples mediante técnicas de modelado y sustracción adaptativa.

Interpolación de Trazas Faltantes: Estimación de trazas faltantes o dañadas mediante interpolación espacial o interpolación de ondículas.

Si bien estas técnicas han sido ampliamente utilizadas y han demostrado cierto grado de efectividad, también presentan limitaciones significativas. Muchas de ellas se basan en supuestos simplificados sobre las características del ruido y los artefactos, lo que puede resultar en una eliminación incompleta o en la introducción de nuevos artefactos. Además, estas técnicas a menudo requieren una intervención manual y ajustes por parte de expertos, lo que puede ser un proceso tedioso y propenso a errores.

LA REVOLUCIÓN DE LA INTELIGENCIA ARTIFICIAL EN EL ACONDICIONAMIENTO DE DATOS SÍSMICOS

Actualmente, la Inteligencia Artificial, y en particular el aprendizaje profundo, está revolucionado el acondicionamiento de datos sísmicos, ofreciendo enfoques más precisos, adaptables y automatizados. Las redes neuronales convolucionales (CNN) y otras arquitecturas de aprendizaje profundo han demostrado un rendimiento excepcional en tareas como la eliminación de ruido, la corrección de amortiguación, la supresión de múltiples y la interpolación de trazas faltantes.

A diferencia de los métodos tradicionales basados en reglas, las redes neuronales pueden aprender patrones complejos directamente de los datos, sin necesidad de una programación explícita de ecuaciones o supuestos simplificados. Mediante el entrenamiento con grandes conjuntos de datos etiquetados, estas redes pueden generalizar y aplicar lo que han aprendido a nuevos datos sísmicos, adaptándose de manera efectiva a diferentes entornos geológicos y condiciones de adquisición.

ELIMINACIÓN DE RUIDO CON REDES NEURONALES

Una de las aplicaciones más prometedoras de la IA en el acondicionamiento de datos sísmicos es la eliminación de ruido. Las CNN y otras arquitecturas de redes neuronales han demostrado una capacidad excepcional para separar el ruido de las señales sísmicas útiles, preservando al mismo tiempo los detalles y características importantes.

Estas redes pueden aprender a reconocer patrones de ruido complejos y sutiles, como el ruido aleatorio, el ruido coherente o el ruido de fondo, y eliminarlos de manera efectiva. Además, pueden adaptarse a diferentes tipos de ruido y aprender a separar múltiples fuentes simultáneas de ruido.

Un enfoque común es el uso de redes neuronales convolucionales autocodificadoras, que se entrenan para reconstruir los datos de entrada limpios a partir de datos ruidosos. Estas redes aprenden a mapear las características de ruido y señal en representaciones separadas, lo que permite una eliminación de ruido efectiva sin comprometer la integridad de las señales sísmicas.

CORRECCIÓN DE AMORTIGUACIÓN Y SUPRESIÓN DE MÚLTIPLES

Otra área en la que la IA está teniendo un impacto significativo es la corrección de amortiguación y la supresión de múltiples. La amortiguación es un fenómeno que ocurre cuando las ondas sísmicas pierden energía a medida que viajan a través de la Tierra, lo que puede distorsionar las señales y dificultar su interpretación. Las múltiples, por otro lado, son reflexiones sísmicas que se superponen con las señales de interés, creando confusión en el análisis en la corrección.

Las redes neuronales pueden aprender a reconocer y compensar los efectos de la amortiguación y las múltiples, mejorando la calidad de los datos sísmicos resultantes. Esto se logra mediante el entrenamiento con conjuntos de datos etiquetados que incluyen ejemplos de datos amortiguados o contaminados por múltiples, junto con sus contrapartes corregidas o suprimidas.

Las CNN están demostrado un rendimiento sobresaliente en estas tareas, aprovechando su capacidad para capturar características locales y globales de los datos. Además, se están explorando enfoques basados en redes generativas antagónicas (GAN) y redes neuronales recurrentes (RNN) para abordar desafíos más complejos en la corrección de amortiguación y la supresión de múltiples

0 Comments:

Publicar un comentario

No olvides de escribir tu opinión personal de nuestro blog, una página o información que desees comprtir. Todos los éxitos para ti. Gustavo Zavala.