Contacto : cgeofisica@gmail.com

Ciencia y Geofísica

Grupo IGPERU

Ciencia y Geofísica

facebook
instagram
linkein
whatsapp
  • Meteorología y Climatología

    Estudiamos el comportamiento de los fenómenos atmosféricos!

  • Volcanología

    Estudiamos el comportamiento de los volcánes!

  • Prospección Geofísica

    Estudiamos técnicas físicas y matemáticas, aplicadas a la exploración del subsuelo para la búsqueda de recursos naturales y yacimientos minerales.

  • Geotermia

    Estudiamos los fenómenos térmicos que tienen lugar en el interior de la Tierra.

  • Tectonofísica

    Estudiamos la dinámica y cinemática de los procesos que deforman a la litosfera mediante métodos cuantitativos.

  • Geomagnetismo

    Estudiamos las propiedades magnéticas de la Tierra.

  • Inteligencia Artificial

    Aplicando los conocimientos en Inteligencia Artificial para convertir la Geofísica más inteligente.

Mostrando las entradas para la consulta gravedad ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas
Mostrando las entradas para la consulta gravedad ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas

EXPLORANDO LAS PROFUNDIDADES DE LA TIERRA: DESCUBRIENDO LA COMPOSICIÓN INTERNA DEL PLANETA

La investigación de la composición interna del planeta es un campo fascinante y crucial dentro de la geofísica. A través de diversas técnicas y métodos, los científicos han logrado desentrañar los misterios que yacen bajo la superficie terrestre, revelando los materiales y estructuras que conforman el núcleo, el manto y la corteza de la Tierra.

EL NÚCLEO: EL CORAZÓN ARDIENTE DE NUESTRO PLANETA

El núcleo terrestre es una región fascinante y enigmática, cuyo estudio ha desafiado a los científicos durante décadas. Ubicado en el centro mismo de nuestro planeta, esta región ardiente y densa alberga secretos cruciales sobre el origen y la evolución de la Tierra, así como sobre los procesos dinámicos que moldean su superficie y su entorno.

a)     Estructura y composición del núcleo

El núcleo se divide en dos regiones principales: el núcleo externo y el núcleo interno. El núcleo externo tiene un radio aproximado de 3.480 kilómetros y se encuentra en estado líquido, compuesto principalmente por una aleación de hierro y níquel a temperaturas que oscilan entre los 4.000 y 5.000 grados Celsius. Esta capa líquida es responsable de la generación del campo magnético terrestre a través del proceso de dínamo auto sustentada.

Por otro lado, el núcleo interno tiene un radio de aproximadamente 1.220 kilómetros y se encuentra en estado sólido debido a las inmensas presiones que prevalecen en su interior, alcanzando un máximo de 360 giga pascales. Este núcleo sólido está compuesto principalmente por hierro cristalino con una estructura hexagonal compacta única, conocida como "hierro ligero".

La composición exacta del núcleo es un tema de debate continuo entre los científicos, pero se cree que además de hierro y níquel, también contiene pequeñas cantidades de otros elementos como azufre, oxígeno, silicio y posiblemente hidrógeno.

b)     Propiedades físicas y químicas del núcleo

El núcleo terrestre se encuentra en un estado único de alta presión y temperatura, lo que da lugar a propiedades físicas y químicas excepcionales. Una de las características más notables es la extrema densidad del núcleo, con un valor promedio de alrededor de 11.000 kilogramos por metro cúbico en el núcleo externo y 13.000 kilogramos por metro cúbico en el núcleo interno.

Otra propiedad fundamental es la alta conductividad eléctrica del núcleo líquido, que permite la generación del campo magnético terrestre a través del proceso de dínamo auto sustentada. Este campo magnético es crucial para proteger la vida en la Tierra de la radiación cósmica dañina y también desempeña un papel importante en la navegación y las comunicaciones.

Además, el núcleo es una fuente significativa de calor para el interior de la Tierra. Este calor, generado por la desintegración de elementos radiactivos y la cristalización del núcleo interno, impulsa la convección del manto y, en última instancia, la tectónica de placas en la superficie.

c)      Investigación y métodos de estudio

Debido a la inaccesibilidad directa del núcleo, los científicos han recurrido a diversos métodos indirectos para estudiar su composición y comportamiento. Uno de los enfoques más importantes es la sismología, que analiza la propagación de las ondas sísmicas generadas por terremotos y explosiones a través del interior de la Tierra. Al estudiar cómo estas ondas se refractan y reflejan en las diferentes capas del planeta, los sismólogos pueden inferir las propiedades físicas del núcleo y su estructura interna.

Otra técnica clave es el geomagnetismo, que estudia el campo magnético terrestre y sus variaciones. Mediante el análisis de los datos del campo magnético, los geofísicos pueden obtener información sobre los procesos dinámicos que ocurren en el núcleo externo líquido, responsable de la generación del campo magnético.

Además, los avances en la geodesia, la geoquímica y los modelos computacionales han contribuido significativamente a nuestro conocimiento sobre la composición y el comportamiento del núcleo. La integración de datos de múltiples fuentes ha permitido construir modelos cada vez más precisos y detallados de esta región crítica del interior de la Tierra.

d)     Implicaciones y desafíos futuros

El estudio del núcleo terrestre tiene implicaciones fundamentales para nuestra comprensión de la dinámica interna del planeta, la evolución del campo magnético y los procesos geológicos en la superficie. Además, el núcleo desempeña un papel crucial en la generación de energía a través del núcleo síntesis, lo que tiene implicaciones para la exploración de fuentes de energía alternativas.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno al núcleo. Por ejemplo, los científicos continúan investigando la naturaleza exacta de la transición entre el núcleo externo líquido y el núcleo interno sólido, así como los mecanismos que impulsan la convección en el núcleo externo y la generación del campo magnético.

Además, el estudio del núcleo también plantea desafíos técnicos y logísticos, ya que las profundidades involucradas son extremadamente grandes y las condiciones de presión y temperatura son difíciles de replicar en laboratorios terrestres.

A pesar de estas dificultades, la exploración del núcleo terrestre sigue siendo una prioridad para los geofísicos y los científicos planetarios, ya que comprender esta región clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.

EL MANTO: LA CAPA INTERMEDIA EN EBULLICIÓN

El manto es una vasta región que se extiende desde la base de la corteza terrestre hasta el núcleo externo, abarcando aproximadamente el 84% del volumen total del planeta [1]. Esta capa intermedia, compuesta principalmente de silicatos ricos en hierro y magnesio, se encuentra en un estado plástico y dinámico, siendo el escenario de procesos fundamentales que moldean la superficie terrestre.

a)     Estructura y composición del manto

El manto se divide en dos regiones principales: el manto superior y el manto inferior, separados por una discontinuidad de fase a una profundidad aproximada de 660 kilómetros. Esta discontinuidad se debe a cambios en las propiedades físicas y químicas de los materiales que componen el manto.

El manto superior, que se extiende desde la base de la corteza hasta una profundidad de aproximadamente 660 kilómetros, está compuesto principalmente de olivino y piroxeno ricos en magnesio y hierro. Esta región es relativamente más fría y rígida en comparación con el manto inferior.

Por otro lado, el manto inferior, que se extiende desde los 660 kilómetros hasta la base del manto a una profundidad de aproximadamente 2.900 kilómetros, está compuesto principalmente de silicatos de magnesio y hierro con estructuras cristalinas más densas, como la perovskita y la ferropericlasa. Esta región es más caliente y fluida que el manto superior.

b)     Convección y dinámica del manto

Una de las características más importantes del manto es su comportamiento convectivo, impulsado por el calor interno del planeta y las diferencias de densidad dentro de la capa. Este proceso de convección, en el cual el material caliente asciende y el material más frío desciende, es responsable de la tectónica de placas, uno de los procesos geológicos más importantes de la Tierra.

La convección en el manto genera una deformación lenta pero continua, que se manifiesta en la formación de cordilleras montañosas, la actividad volcánica y los terremotos en las zonas de subducción y divergencia de las placas tectónicas. Además, la convección también influye en la generación del campo magnético terrestre a través de su interacción con el núcleo externo líquido.

c)      Propiedades físicas y químicas del manto

El manto presenta una gran variedad de propiedades físicas y químicas que influyen en su comportamiento dinámico. Una de las propiedades más importantes es la reología, que describe cómo los materiales del manto responden a las tensiones y deformaciones a largo plazo.

El manto superior tiene un comportamiento más rígido y frágil, lo que resulta en la formación de fallas y deformaciones frágiles en esta región. Por otro lado, el manto inferior exhibe un comportamiento más dúctil y fluido debido a las altas temperaturas y presiones presentes a esas profundidades.

Además, el manto tiene una alta conductividad térmica, lo que facilita la transferencia de calor desde el núcleo externo hacia la superficie terrestre. Esta transferencia de calor es fundamental para impulsar la convección y mantener activos los procesos tectónicos en la superficie.

d)     Investigación y métodos de estudio

El estudio del manto terrestre implica una combinación de técnicas y enfoques, incluyendo la sismología, la geodesia, la geoquímica y los modelos computacionales. La sismología, en particular, ha sido clave para comprender la estructura y composición del manto al analizar la propagación de las ondas sísmicas generadas por terremotos y explosiones.

Otra técnica importante es el estudio de los xenolitos, que son fragmentos de roca del manto superior transportados hasta la superficie por erupciones volcánicas. El análisis de estos xenolitos ha proporcionado información valiosa sobre la composición mineral y química del manto superior.

Además, los avances en la geodesia, como el uso de satélites y mediciones de gravedad, han permitido obtener información sobre la distribución de masas y la dinámica del manto a escalas regionales y globales.

e)     Implicaciones y desafíos futuros

El estudio del manto tiene implicaciones fundamentales para nuestra comprensión de la dinámica interna de la Tierra, la tectónica de placas, la actividad volcánica y la evolución del campo magnético terrestre. Además, el manto desempeña un papel crucial en los ciclos geoquímicos del planeta, influyendo en la composición de la corteza y la atmósfera.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno al manto. Por ejemplo, los científicos continúan investigando los mecanismos exactos que impulsan la convección en el manto y su interacción con el núcleo externo líquido.

Además, el estudio del manto también plantea desafíos técnicos y logísticos, ya que las profundidades involucradas son extremadamente grandes y las condiciones de presión y temperatura son difíciles de replicar en laboratorios terrestres. Los avances en las técnicas de experimentación a altas presiones y temperaturas, así como en los modelos computacionales, serán fundamentales para mejorar nuestra comprensión del manto en el futuro.

A pesar de estas dificultades, la exploración del manto terrestre sigue siendo una prioridad para los geofísicos y los científicos planetarios, ya que comprender esta región clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.


LA CORTEZA: LA DELGADA CAPA EXTERIOR

La corteza terrestre es la capa más externa y delgada de nuestro planeta, pero desempeña un papel fundamental en la dinámica geológica y en el sostén de la vida en la superficie. A pesar de su relativa delgadez, la corteza exhibe una gran diversidad en términos de composición, estructura y procesos que la moldean.

a)     Estructura y composición de la corteza

La corteza terrestre se divide en dos tipos principales: la corteza continental y la corteza oceánica. Estas dos variedades difieren significativamente en su composición química, espesor y propiedades físicas.

La corteza continental tiene un espesor promedio de aproximadamente 35 kilómetros, aunque puede alcanzar espesores de hasta 70 kilómetros en algunas regiones montañosas. Está compuesta principalmente de rocas graníticas ricas en sílice (SiO2) y aluminio, con una composición química promedio similar a la de las rocas ígneas félsicas.

Por otro lado, la corteza oceánica es mucho más delgada, con un espesor promedio de solo 6 a 7 kilómetros. Está formada principalmente por rocas basálticas más densas y ricas en hierro y magnesio, con una composición química similar a la de las rocas ígneas máficas.

Estas diferencias en la composición química y mineral de la corteza tienen implicaciones significativas en su densidad, comportamiento reológico y procesos geológicos asociados, como la formación de montañas, la actividad volcánica y la deformación tectónica.

 

b)     Formación y evolución de la corteza

La formación y evolución de la corteza terrestre están estrechamente vinculadas a los procesos de tectónica de placas y al ciclo de las rocas. La corteza oceánica se forma continuamente en las dorsales oceánicas, donde el magma basáltico asciende y se solidifica para formar nueva corteza oceánica. A medida que las placas tectónicas se alejan de las dorsales, la corteza oceánica se enfría y se vuelve más densa, hundiéndose eventualmente en las zonas de subducción.

Por otro lado, la corteza continental es mucho más antigua y se ha formado a través de una combinación de procesos, incluyendo la fusión parcial del manto, la acreción de arcos volcánicos y la colisión y amalgamación de terrenos tectónicos.  La corteza continental es relativamente más ligera que la corteza oceánica y, por lo tanto, tiende a flotar sobre el manto, evitando ser reciclada en las zonas de subducción.

c)      Propiedades físicas y químicas de la corteza

La corteza terrestre exhibe una amplia gama de propiedades físicas y químicas que influyen en su comportamiento y en los procesos geológicos que ocurren en ella. Una propiedad clave es la reología, que describe cómo las rocas de la corteza responden a las tensiones y deformaciones a largo plazo.

La corteza continental superior tiende a ser más rígida y frágil, lo que resulta en la formación de fallas y estructuras de deformación frágiles. Por otro lado, la corteza inferior y la corteza oceánica exhiben un comportamiento más dúctil y fluido debido a las altas temperaturas y presiones presentes a esas profundidades.

Además, la corteza tiene una baja conductividad térmica en comparación con el manto subyacente, lo que influye en la transferencia de calor desde el interior del planeta hacia la superficie. Esta transferencia de calor es fundamental para impulsar procesos como el vulcanismo y la actividad hidrotermal.

d)     Investigación y métodos de estudio

El estudio de la corteza terrestre implica una combinación de técnicas y enfoques, incluyendo la geología de campo, la sismología, la geoquímica y los métodos de prospección geofísica. La geología de campo proporciona observaciones directas de las rocas y estructuras de la corteza, mientras que la sismología permite inferir su estructura interna y composición al analizar la propagación de las ondas sísmicas.

La geoquímica, por su parte, involucra el análisis de la composición química e isotópica de las rocas y minerales de la corteza, lo que proporciona información sobre su origen y evolución. Además, los métodos de prospección geofísica, como la gravimetría y la magnetometría, permiten mapear las variaciones en la densidad y las propiedades magnéticas de la corteza, respectivamente.

e)     Implicaciones y desafíos futuros

El estudio de la corteza terrestre tiene implicaciones fundamentales para nuestra comprensión de la evolución geológica del planeta, la formación de recursos minerales, la evaluación de riesgos naturales y la exploración de recursos energéticos. Además, la corteza desempeña un papel crucial en el ciclo del agua y en el sostén de la vida en la superficie terrestre.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno a la corteza. Por ejemplo, los científicos continúan investigando los mecanismos exactos que controlan la formación y evolución de la corteza continental, así como los procesos que dan lugar a las diferencias entre la corteza continental y oceánica.

Además, el estudio de la corteza también plantea desafíos técnicos y logísticos, ya que su accesibilidad está limitada por su profundidad y la complejidad de las estructuras geológicas. Los avances en las técnicas de perforación profunda, la sismología de alta resolución y los métodos de prospección geofísica serán fundamentales para mejorar nuestra comprensión de la corteza en el futuro.

A pesar de estas dificultades, la exploración de la corteza terrestre sigue siendo una prioridad para los geólogos y geofísicos, ya que comprender esta capa clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.

 

MÉTODOS DE INVESTIGACIÓN: REVELANDO LOS SECRETOS DEL INTERIOR TERRESTRE

Para explorar la composición interna del planeta, los geofísicos emplean una variedad de técnicas y enfoques, cada uno de los cuales aporta información valiosa sobre diferentes aspectos del interior de la Tierra.

Sismología: El estudio de las ondas sísmicas generadas por terremotos y explosiones ha sido fundamental para comprender la estructura interna del planeta. Al analizar cómo se propagan estas ondas a través de los diferentes materiales, los sismólogos pueden inferir la composición y las propiedades físicas de las capas internas de la Tierra.

Geodesia: Esta disciplina se encarga de estudiar la forma, las dimensiones y el campo gravitacional de la Tierra. Mediante el análisis de las variaciones en la gravedad y el movimiento de satélites, los geodesistas pueden obtener información sobre la distribución de masas en el interior del planeta y las deformaciones de la superficie terrestre.

Geomagnetismo: El estudio del campo magnético terrestre y sus variaciones proporciona pistas sobre la naturaleza del núcleo externo líquido y los procesos dinámicos que ocurren en su interior.

Geoquímica: El análisis de la composición química e isotópica de las rocas y minerales, tanto en la superficie como en muestras obtenidas mediante perforaciones profundas, aporta información valiosa sobre los procesos de formación y evolución de los materiales que conforman el interior de la Tierra.

Exploraciones directas: Aunque limitadas en profundidad, las perforaciones profundas y los estudios de xenolitos (fragmentos de roca del manto superior transportados hasta la superficie por erupciones volcánicas) han proporcionado muestras físicas del interior terrestre para su análisis en laboratorio.

Estas técnicas, junto con el desarrollo de modelos computacionales avanzados y la integración de datos de múltiples fuentes, han permitido a los geofísicos construir una imagen cada vez más detallada y precisa de la composición y estructura interna de nuestro planeta.

 

GEOFISICA!


Cabe vez que comento o menciono sobre Geofísica me da gusto saber que pude elegir bien la profesión que escogí estudiar y es que la Geofísica tiene tantas materias por investigar  de diversas formas y maneras que nos faltaría el tiempo en poder terminar de hacerlo.

Nuestro blog se compromete en brindarles mayor información sobre Laboratorios Geofísicos alrededor del Mundo para tener una mayor base de datos posibles. Y es que el Geofísico es tan ingenioso que desde hace mucho tiempo viene trabajando junto con laboratorios cada vez que realiza estudios de campo o interpretaciones cuantitativas; pero nunca llegué a imaginar un laboratorio geofísico subterráneo donde se realicen estudios geofísicos sobre mareas terrestres, gravimetría y calibración de gravímetros. ¡Pues es cierto! Ya que existe desde el año 1972 en el Valle de los Caídos, en la sierra noroeste de Madrid, España. En este laboratorio geofísico subterráneo ubicado en el subsuelo de la basílica del Valle de los Caídos han podido trabajar científicos españoles, alemanes y finlandeses. Incluso fue catalogado como uno de los mejores laboratorios más sotisficados de toda Europa.

Lo que hace ideal el funcionamiento de este laboratorio es su muy buena ubicación en dicho lugar debido a que puede presentar unas condiciones muy favorables, por no decir excepcionales, de una gran estabilidad, que permite hacer de forma magnifica las medidas geodésicas. Fuente:http://www.elvalledeloscaidos.es/portal/archives/3282

En las instalaciones de dicho laboratorio geofísico subterráneo existen las siguientes estaciones: un laboratorio subterráneo de mareas terrestres, una estación de gravedad absoluta y una línea de calibración de gravímetros. Fuente:http://www.elvalledeloscaidos.es/portal/archives/3282

Este laboratorio ha estado operando durante unos 37 años realizándose numerosos estudios científicos realizados durante ese tiempo por científicos de Europa. Simplemente muy interesante. Seguiremos actualizando más sobre este maravilloso laboratorio Geofísico.

Les dejamos algunas imágenes sobre algunos equipos geofísicos que se utilizan en este LAboratorio ubicado en el Valle de los Caidos en España.

Ambiente de trabajo.
Aparato de observación gravimétrico.



















Estos son aparatos de observación gravímetricas (gravímetros absolutos) de las citadas instalaciones del Valle de los Caídos.

Este es una veleta-anemómetro para medir la dirección de los vientos en ese lugar lejano.

Para cualquier consulta y/o comentarios no dudes en comentarnos o mandarnos un email a marvar26@gmail.com


 
Geofísica!

En EE.UU. siempre hemos escuchado sobre la presencia de tornados que causan estragos y grandes daños materiales en las zonas donde se producen, además de producir al país grandes pérdidas económicas. Estos tornados se forman con condiciones especiales relacionadas con la temperatura, el aire y la presión. 


Estos tornados no solo se forman en tierra, sino también en algunas oportunidades los hemos observado en el mar, sobre su superficie y que al igual que los tornados que se producen en tierra obedecen a ciertas condiciones meteorológicas, los llamamos trombones de agua, en algunos países pueden recibir diferentes nombres, pero esta clase de tornados levantan el agua del mar y así se pueden volver visibles frente a cada uno de nosotros, hasta creo que una vez hemos podido observar un video de una embarcación que se enfrentó a esta clase de tornado.


Pero lo último que se ha podido confirmar y que hasta la fecha se forma muy extrañamente es la presencia o la formación de un tornado pero de fuego


Así como lo pueden leer, esto sucedió en la localidad australiana de Alice Springs, un cineasta que exploraba nuevos escenarios para sus películas ha captado un fenómeno extraño: un tornado de fuego con llamas de más de 30 metros de altura. Según los expertos es muy difícil de ver y se produce cuando el aire caliente toca el suelo.



¿Pero cómo podemos explicar científicamente este fenómeno? 

Tornado de fuego.
Recordemos que un remolino de fuego, también llamado tornado de fuego, es un raro fenómeno en el cual el fuego, bajo ciertas condiciones (dependientes de la temperatura del aire y las corrientes), adquiere una vorticidad vertical y forma un remolino o una columna de aire de orientación vertical similar a un tornado. La mayoría de los más grandes tornados de fuego surgen a partir de incendios forestales en los cuales están presentes corrientes de aire cálido ascendentes y convergentes.Usualmente presentan de 10 a 50 metros de alto, unos pocos metros de ancho y duran solo unos minutos. Sin embargo, algunos pueden tener más de un kilómetro de alto, contener vientos superiores a los 160 km/h y persistir por más de 20 minutos. (1)

Algo que posiblemente si los sorprenda es que es necesario tener gravedad para tener esa convección que se necesita para que se formen los tornados.

Si tenemos un fuego más grande y poderoso, necesariamente habrá más convección, más aire caliente subiendo y más aire entrando a llenar el espacio que deja el aire al subir .Lo que empieza con un remolino que puede durar segundos, o puede mantenerse y amplificarse si el aire entra de forma constante a la llama. Las corrientes convectivas continúan y elevan al pequeño remolino formando lo que pronto será un tornado de fuego. (2)

REFERENCIAS BIBLIOGRÁFICAS

(1) http://es.wikipedia.org/wiki/Remolino_de_fuego

(2) http://imperiodelaciencia.wordpress.com/2012/10/04/tornados-de-fuego/

GEOFISICA

"Cuando la intensidad de un ciclón tropical supera la clasificación de Tormenta tropical, se convierte en un huracán." - Wikipedia

 Mexico, país donde se ha vivido uno de los fenómenos geofísicos más enormes en la historia, ha podido experimentar el azote de uno de los huracanes de más alta categoría, el Huracán Patricia.

Huracán Ernesto.
Los huracanes por lo general se forman en la zona occidental del  globo sobre el Atlántico, donde por condiciones atmosféricas determinadas  y definidas pueden convertirse en un fenómeno geofísico de gran impacto sobre su trayectoria. El Huracan Patricia se inició como una Depresión Tropical para convertirse posteriormente en una Tormenta Tropical y finalmente encontrando las condiciones adecuadas en un Huracán de categoría 5; una de las categorías más altas en la clasificación de huracanes brindada actualmente por el Centro Nacional de Huracanes.

Pero, ¿Cómo llegan a clasificarse los huracanes? 

En un inicio esta clasificación solo se daba de acuerdo a la velocidad del viento, diseñada por el ingeniero civil Herbert Saffir y porteriormente por Bob Simpsom, director del Centro Nacional de Huracanes de los Estados Unidos, quien añadiría a la escala los efectos del oleaje e inundaciones. Como lo mencionamos anteriormente un Huracán para formarse tiene que pasar por dos condiciones inicialmente: siendo una Depresión Tropical (sistema organizado de nubes y tormenta eléctrica con una circulación cerrada y definida.) para luego convertirse en una Tormenta Tropical (sistema organizado de fuertes tormentas eléctricas con una circulación bien definida que muestra la distintiva forma ciclónica.) (1) Para ver los datos de estas condiciones iniciales visita el enlace en la referencias bibliográficas.

Ahora, cuando la intensidad de un ciclón tropical supera la clasificación de Tormenta tropical, se convierte en un huracán.

CATEGORIAS DE UN HURACAN (1)

1. Categoría 1

Con velocidades de viento de 33–42 m/s 119–153 km/h, mareas de 1.2–1.5 m y una presión central de 980–994 mbar, causando daños básicamente en casas flotantes no amarradas, arbustos y árboles. Inundaciones en zonas costeras y daños de poco alcance en puertos.

2. Categoría 2

 Con velocidades de viento de 43–49 m/s 154–177 km/h, mareas de 1.8–2,4 m y una presión central de 965–979 mbar, causando daños en tejados, puertas y ventanas. Importantes daños en la vegetación, casas móviles, etc. Inundaciones en puertos así como ruptura de pequeños amarres.

3. Categoría 3

 Con velocidades de viento de 50–58 m/s 178–209 km/h, mareas de 2.7–3,7 m y una presión central de 945–964 mbar, causando daños estructurales en edificios pequeños. Destrucción de casas móviles. Las inundaciones destruyen edificaciones pequeñas en zonas costeras y objetos a la deriva pueden causar daños en edificios mayores. Posibilidad de inundaciones tierra adentro.

4. Categoría 4

Con velocidades de viento de 59–69 m/s 210–249 km/h, mareas de 4.0–5,5 m y una presión central de 920–944 mbar, causando daños generalizados en estructuras protectoras, desplome de tejados en edificios pequeños. Alta erosión de bancales y playas. Inundaciones en terrenos interiores.

5. Categoría 5

Con velocidades de viento de ≥70 m/s ≥250 km/h, mareas de ≥5,5 m y una presión central de <920 mbar, causando destrucción de tejados completa en algunos edificios. Las inundaciones pueden llegar a las plantas bajas de los edificios cercanos a la costa. Puede ser requerida la evacuación masiva de áreas residenciales.

Aunque puedan ser solo números hay que tener presente lo que significan, un Huracán de categoría 5 puede llegar a ser muy destructivo perjudicando todas las areas existentes en su recorrido.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31

REFERENCIAS BIBLIOGRAFICAS

(1) https://es.wikipedia.org/wiki/Escala_de_huracanes_de_Saffir-Simpson
 
GEOFISICA
@CGeofisica2015 |


"El geomagnetismo se ocupa del estudio del campo magnético terrestre, tanto de su generación como de su variación espacial y temporal." - Wikipedia

Actualizado al 05-07-17

La existencia del plasma, uno de los estados de la materia, es actualmente estudiado por científicos y geofísicos para tratar de entender su origen y comportamiento más detalladamente. Hasta ahora se entendía que el plasma era provocado por las explosiones provenientes del Sol pero ahora, se está estudiando la presencia de plasma en la Tierra que junto con su campo magnético tienen una relación especial (explicado en el vídeo).

La posición de estas estructuras de plasma que se presentan en nuestro planeta se encuentran aproximadamente a 600 km. por encima de la superficie terrestre, en la Ionosfera Superior hasta la "Plasmasfera". Existe un patrón donde las franjas de plasma de alta densidad se alternan prolijamente con franjas de plasma de baja densidad. Este patrón se mueve lentamente y se alinean con las lineas del campo magnético de la Tierra.

"Hemos proporcionado evidencia visual de lo que realmente hay allí..." - Clero Loi, estudiante de postgrado en astrofísica de la Universidad de Sidney, y cuya tesis en pregrado trata sobre los tubos de plasma. (1) Dicha tesis y/o información fue publicada en Geophysics Research Letters. (2)

La existencia de tubos de plasma es evidente, porque no utilizar esa fuente de energía en algo productivo o convertido en otra fuente de energia.

Pero, ¿Cómo es que realmente se forman? Estos tubos de plasma gigantes se producen cuando la ionosfera se ioniza por la luz solar, es decir, que la magnetosfera se llena del plasma que se crea en la atmósfera ionizada por la luz solar. (3)

Para que Cloi Loi pudiera visualizar y modelar dichos tubos en una computadora tuvo que usar la matriz del radiotelescopio Murchison Wildfield Array (MWA). Cloi se dio cuenta que podía estudiar estos tubos en tiempo real y en 3D. Para poder ver este resultado, en vez de usar las 128 antenas situados en 9 kilómetros cuadrados de forma conjunta, las separó, algunas mirando hacia el oeste y otras mirando a el este, pudiendo obtener imágenes en 3D.

Al parecer esta joven estudiante de pregrado utilizo su capacidad de entendimiento sobre generación de imágenes en 3D, algo que suele hacerse parecidamente en imágenes satelitales.

"...Hemos sido capaces de medir las distancias de estas estructuras de plasma, su altura desde el suelo y su inclinación pronunciada. Esto nunca ha sido posible antes y es una nueva técnica emocionante..." (3)
Pero para algunas personas esta clase de procesamientos y sus resultados no pueden darse por un estudiante de pregrado, a lo cual "...Muchos de los altos colaboradores pensaron que los resultados eran demasiado buenos para ser verdad..." - Dr. Tara Murphy



"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

BUSCADOR INTERNO


¡ÚNETE A ESTA INVESTIGACIÓN!

¡Ayúdanos a investigar sobre la fisiografía y estratigrafía de las chimeneas de los volcanes donando con lo que tú puedas. Lo recaudado nos ayudará en los costos operativos para hacer realidad la investigación! o ¡Ayúdanos aportando ideas de cómo lo podrías hacer tú! Equipo de Ciencia y Geofísica.

  

REFERENCIAS BIBLIOGRÁFICAS

(1) http://pijamasurf.com/2015/06/captan-tubos-gigantes-de-plasma-flotando-en-la-magnetosfera-de-la-tierra-video/

GEOFISICA
Versión en Español | Inglés | Portugués | Italiano


Nuestro planeta es un lugar dinámico y activo. Actualmente todos los días ocurren sismos y/o terremotos en diferentes lugares del planeta con diferentes periodos de tiempo, intensidad o aceleraciones. Pero gracias al avance de la ciencia actualmente disponemos de herramientas que nos ayudan a estudiar y comprender mejor estos tipos de fenómenos naturales, o que en todo caso, inducidos por el hombre.

Los sismogramas son los medios por los que los científicos y geofísicos analizan los arrivos de las ondas sísmicas a las estaciones donde se ubican los sismómetros registrando continuamente estas señales para posteriormente determinar en que lugar del planeta ocurrió el evento sísmico.

Para esto, entonces debemos tener clara la idea de qué son los sismogramas y para qué nos pueden servir y cómo los podemos utilizar para discutir los análisis, estudios o interpretaciones de un evento sísmico dado. He aquí algunos conceptos e ideas de los sismogramas que todo geofísico debe tener siempre presente:

1. Los sismogramas registran el movimiento natural o artificial del suelo.

Es natural que nuestro planeta esté en movimiento debido a la deriva continental de las placas tectónicas sobre la astenósfera (en estudio), los roces y/o fricciones entre el material circundante, el fracturamiento de los materiales liberan energía de diferentes formas, siendo una de ellas energía mecánica produciendo oscilaciones en el material. Las velocidades con la que las oscilaciones viajan a través del medio varían arrivando a las diferentes estaciones sísmicas. Los sismómetros registran estas oscilaciones por lo que pueden ser vistas en los sismogramas.

2. Los sismómetros presentan dos componentes horizontales y un vertical.

Para determinar la correcta localización del arrivo de las ondas sísmicas a la estación sísmica, el sismómetro registra la señal en sus dos componentes horizontales, una de dirección norte-sur (N-S) y la otra en dirección este-oeste (E-W). Además de una tercera dirección la que es vertical (down-up).

Esto con la finalidad de determinar la correcta velocidad de las ondas sísmicas y de poder localizar adecuadamente la ubicación del hipocentro del sismo.

3. Con los sismogramas se puede visualizar el arrivo de las ondas sísmicas.

Las ondas sísmicas por lo general pueden ser de de dos tipos, las corpóreas o de cuerpo ( las ondas P y S) y las ondas superficiales (love o rayleigh ). La primera onda en ser registrada es la P porque posee una mayor velocidad que la onda S que es la segunda en arrivar, posteriormente y en forma conjunta las ondas superficiales.

4. Tipos de sismogramas de acuerdo al tipo de evento sísmico.

Existen diferentes formas de visualizaciones de los sismogramas que registran los sismómetros, y cada una de ellas variará de acuerdo al tipo de evento sísmico ocurrido.

Existen sismogramas para eventos locales, regionales, telesismicos, explosiones nucleares, megaterremotos, tremores volcánicos, sismo volcánicos. Todos estos tipos de señales tienen sus características propias ayudándonos a determinar qué tipo de evento sísmico ocurrió en un determinado lugar. (Analizados en la sección de sismología)

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31