Contacto : cgeofisica@gmail.com

Ciencia y Geofísica

Grupo IGPERU

Ciencia y Geofísica

facebook
instagram
linkein
whatsapp
  • Meteorología y Climatología

    Estudiamos el comportamiento de los fenómenos atmosféricos!

  • Volcanología

    Estudiamos el comportamiento de los volcánes!

  • Prospección Geofísica

    Estudiamos técnicas físicas y matemáticas, aplicadas a la exploración del subsuelo para la búsqueda de recursos naturales y yacimientos minerales.

  • Geotermia

    Estudiamos los fenómenos térmicos que tienen lugar en el interior de la Tierra.

  • Tectonofísica

    Estudiamos la dinámica y cinemática de los procesos que deforman a la litosfera mediante métodos cuantitativos.

  • Geomagnetismo

    Estudiamos las propiedades magnéticas de la Tierra.

  • Inteligencia Artificial

    Aplicando los conocimientos en Inteligencia Artificial para convertir la Geofísica más inteligente.

Mostrando las entradas para la consulta ONDAS ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas
Mostrando las entradas para la consulta ONDAS ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas

GEOFISICA

Monitoreo Geofísico en Ecuador.
En estudios geofisicos la interpretación es muy importante,  con ella podemos determinar el éxito de un trabajo geofisico mostrando los correctos resultados con los datos pertinentes.

Pero en geofisica no solo nos esforzamos por brindar una correcta interpretación. El monitoreo geofisico también es una tarea importante.  Llamada también vigilancia geofisica, la usamos para monitorear en determinados periodos de tiempo algun evento natural, o en algunos casos especiales, eventos originados por el hombre. Por lo general este monitoreo o vigilancia geofisica nos ayuda en la previsión, prevención y alerta temprana de un posible evento, desastre o desarrollo geofisico.

Es así de esta forma, que el monitoreo geofisico tiene un impacto importante en el bienestar de una zona en particular. En los casos que sean eventos originados por el hombre, el monitoreo geofisico nos ayuda en la administración y control de una herramienta o evento.

Son varias las áreas en geofisica que se puede realizar un monitoreo. En vulcanologia el monitoreo se realiza con la ayuda de cámaras especiales en ubicaciones estratégicas, donde podemos visualizar la actividad de un volcán,  en minería en el área de geotecnia podemos monitorear las vibraciones sísmicas ocurridas por una voladura, en Meteorología monitoreamos las condiciones atmosféricas, y así en diferentes áreas en particular por citar otros ejemplos.

Todo ésto nos ayuda en la comprensión, análisis, prevención y previsión del comportamiento geofisico de un determinado evento.

Las herramientas que se utilizan para el monitoreo son diversas y no únicas. Se pueden usar cámaras, sismógrafos, satélites para organizar un adecuado monitoreo geofisico. La interpretación del monitoreo es fundamental para determinar si existe o no un peligro inminente o en consecuencia convertirse con el tiempo en un desastre geofisico.
Una computadora, laptop o sistema informático con acceso a Internet será fundamental para la visualización, análisis e interpretación correcta del evento en cuestión.

Una buena herramienta en el monitoreo geofisico de volcanes son los sismogramas en tiempo real los cuales ayudan en la visualización, análisis y estudio de las señales sismicas de la actividad interna del volcán y que nos alertan de una probable o innminente erupción.  Lo cual da oportunidad a la población para una posible evacuación. Para ésto nos apoyamos de una red sísmica telemétrica. Otra manera de monitorear en directo la actividad de un volcán es usando camaras especiales (como webcams) y con una conexión de internet transmitir en directo hasta nuestra base central las imágenes en vivo. Lo importante es transmitir y difundir la información en tiempo real.
 
Nuestro equipo realizará monitoreos en diversas áreas de la Geofisica con la diferencia que la visualización será de manera pública.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica

TAMBIÉN TE INTERESARÁ

Monitoreo Geofísico | Alfred Wegener. ¿Geofisico o Geologo? | Software Geofísico | La Geofísica y las Matemáticas | Desastres naturales y desastres geofísicos | Existencia de ondas gravitacionales | ¿Cómo se transmite el calor interno de la Tierra? | Desarrollo de magma | Monitoreo Geofísico

El Papel Transformador de la Inteligencia Artificial en la Geofísica

La Inteligencia Artificial (IA) está revolucionando prácticamente todos los campos de la ciencia y la tecnología, y la geofísica no es una excepción. Esta disciplina, que estudia la estructura, composición y procesos de la Tierra mediante mediciones físicas, se está beneficiando enormemente de los avances en el aprendizaje automático, el procesamiento de señales y la visualización de datos.

Procesamiento de Datos Sísmicos

Una de las aplicaciones más prometedoras de la IA en la geofísica es el procesamiento de datos sísmicos. Los datos sísmicos, obtenidos a través de fuentes sísmicas artificiales o eventos naturales como terremotos, son fundamentales para explorar las estructuras geológicas subterráneas y detectar yacimientos de petróleo, gas y otros recursos minerales.


Tradicionalmente, el procesamiento de datos sísmicos ha sido un proceso tedioso y propenso a errores, que requiere una gran cantidad de intervención manual. Sin embargo, las técnicas de aprendizaje profundo, como las redes neuronales convolucionales, están demostrando un enorme potencial para automatizar y mejorar este proceso.

Estas redes neuronales pueden aprender patrones complejos en los datos sísmicos y realizar tareas como la eliminación de ruido, la corrección de amortiguación, la migración y la inversión de la forma de onda de manera más precisa y eficiente que los métodos tradicionales. Además, pueden adaptarse a diferentes entornos geológicos y condiciones de adquisición de datos, lo que mejora aún más la calidad de los resultados.

Interpretación de Datos Sísmicos

Además del procesamiento, la IA también está transformando la interpretación de datos sísmicos. Esta tarea crucial implica analizar los datos procesados para identificar y caracterizar estructuras geológicas, como fallas, pliegues y horizontes estratigráficos.

Las redes neuronales convolucionales y otras técnicas de aprendizaje profundo pueden entrenarse para reconocer patrones y características específicas en los datos sísmicos, lo que permite una interpretación más rápida, consistente y precisa. Estas técnicas también pueden ayudar a reducir la ambigüedad y la subjetividad inherentes a la interpretación manual.

Además, la IA puede integrarse con herramientas de visualización 3D avanzadas, lo que permite a los geofísicos explorar y analizar los datos de manera más intuitiva y efectiva. Esta integración facilita la identificación de características geológicas complejas y la toma de decisiones informadas sobre la exploración y explotación de recursos.

Modelado de Reservorios

El modelado de reservorios es otro campo en el que la IA está teniendo un impacto significativo. Los modelos de reservorios son representaciones digitales de las formaciones geológicas que contienen hidrocarburos u otros recursos, y son fundamentales para la planificación y optimización de la producción.

Las técnicas de aprendizaje automático se están utilizando para construir modelos de reservorios más precisos y detallados, incorporando una gran cantidad de datos de diferentes fuentes, como registros de pozos, datos sísmicos y mediciones de producción. Estos modelos pueden capturar la complejidad y la heterogeneidad de los reservorios de manera más realista, lo que conduce a una mejor comprensión de las propiedades y el comportamiento de los fluidos.

Además, la IA se está utilizando para optimizar las estrategias de extracción de recursos, teniendo en cuenta factores como la ubicación de los pozos, las tasas de inyección y producción, y las características del fluido. Estos enfoques basados en IA pueden ayudar a maximizar la recuperación de recursos y reducir los costos operativos.

Monitoreo y Predicción de Riesgos Geológicos

Otra área en la que la IA está demostrando su valor en la geofísica es en el monitoreo y la predicción de riesgos geológicos, como terremotos, deslizamientos de tierra y erupciones volcánicas.

Las redes neuronales y otras técnicas de aprendizaje automático pueden analizar grandes conjuntos de datos geofísicos, sísmicos y geodésicos para identificar patrones y señales precursoras de eventos peligrosos. Estas técnicas pueden complementar y mejorar los métodos tradicionales de predicción de riesgos, lo que permite una mejor preparación y mitigación de desastres.

Además, la IA se está utilizando para el monitoreo en tiempo real de eventos geológicos en curso, como la propagación de ondas sísmicas o la evolución de erupciones volcánicas. Esto permite una respuesta más rápida y efectiva a estas situaciones de emergencia, lo que puede salvar vidas y minimizar los daños.

Desafíos

Si bien el potencial de la IA en la geofísica es enorme, también existen desafíos y consideraciones importantes que deben abordarse.

Uno de los principales desafíos es la disponibilidad y calidad de los datos de entrenamiento. Las técnicas de aprendizaje profundo requieren grandes cantidades de datos etiquetados y de alta calidad para funcionar de manera óptima. En la geofísica, la adquisición de datos puede ser costosa y los conjuntos de datos pueden estar sesgados o incompletos.

Otro desafío es la interpretabilidad y la explicabilidad de los modelos de IA. Muchas de estas técnicas funcionan como "cajas negras", lo que puede dificultar la comprensión de cómo se llegan a ciertas conclusiones o predicciones. Esto puede plantear problemas en términos de confianza y aceptación por parte de los expertos en geofísica.

Además, existen preocupaciones sobre la ética y la privacidad en torno a la aplicación de la IA en la geofísica. Por ejemplo, el uso de datos sísmicos o de otro tipo podría plantear problemas de privacidad si se recopilan sin el consentimiento adecuado. También existe el riesgo de que la IA se utilice de manera indebida o con fines maliciosos, como la manipulación de predicciones de riesgos geológicos.

A pesar de estos desafíos, la comunidad geofísica está trabajando arduamente para abordarlos y aprovechar al máximo el poder de la IA. Se están desarrollando nuevas técnicas de adquisición y procesamiento de datos, mejorando la interpretabilidad de los modelos de IA y estableciendo marcos éticos y regulatorios sólidos.


Simulación de las corrientes de convección en el Manto
En 1912 Alfred Wegener iniciaba sus estudios en la Teoría de la Deriva Continental pero en su inicio fue descartada ya que su teoría carecía de un mecanismo para explicar la deriva de los continentes.  En su trabajo original propuso que los continentes se desplazaban sobre otra capa más densa de la Tierra que lo conformaba el fondo oceánico y lo que se prolongaba debajo de ellos.

Para el año 1960 la Teoría de la Deriva Continental y la Expansión del Fondo Oceánico quedaron incluidos en la Teoría de la Tectónica de Placas. Según esta teoría el desplazamiento de los continentes sucede desde hace miles de años con la convección global del Manto, haciendo que la Litosfera sea reconfigurada y desplazada permanentemente. Originándose de esta manera los sismos alrededor del mundo.

La Tierra está divida en tres partes. La más interna y caliente, el núcleo, con temperaturas mayores a los 6000 grados centígrados, principal partícipe en la generación de calor de nuestro planeta. Continúa la parte media. el Manto, y por último la parte más fría del planeta donde alberga vida, la Litosfera. Quien le da su calor propio a nuestro planeta es el Núcleo, comportándose como un gran reactor nuclear, transmitiendo el calor del Núcleo hasta su superficie. Pero ¿Cómo reacciona el Manto al calor y temperatura elevadas expuesta por el Núcleo?

Todo inicia en el Núcleo. Con la desintegración radioactiva de sus elementos pesados como el Torio,  entre otros van calentando gradualmente todo lo que se encuentra alrededor. Las propiedades físicas de los materiales permiten la transferencia de calor a las zonas más cercanas a la Litosfera. Pero en el camino van perdiendo su capacidad calorífica enfriándose gradualmente. Por diferencia de densidades entre los materiales, la materia con mayor densidad regresa al Manto, mientras los materiales que poseen menor densidad ascienden transformándose en un ciclo continuo y repetitivo.  A esto se le llama Convección del Manto. Continua leyendo.

TAMBIÉN TE INTERESARÁ
GEOFISICA

"La Geofísica usa para su estudio métodos cuantitativos físicos como la física de reflexión y refracción de ondas mecánicas." Wikipedia

En todo el mundo existen volcanes, desde lugares inhóspitos hasta los lugares más helados del planeta como es el caso de la Antártida. En esta oportunidad conoceremos uno de los volcanes ubicados en Alaska, el volcán Pavlof.

Volcan Pavlof
El Volcán Pavlof es un estratovolcano en la Península de Alaska. Ha sido uno de los más activos en los Estados Unidos desde 1980, con erupciones registradas en 1980, 1981, 1983, 1986–1988, 1996–1997, desde el 15 de Agosto hasta el 13 de Setiembre del 2007, desde el 16 de Mayo hasta el 8 de Agosto del 2013, y el más reciente el 31 de Mayo del 2014 y continuando hasta el 3 de Junio del 2014.

Presenta una elevación de 2,515 m. y presenta Coordenadas Geográficas de 55°25′10″N y 161°53′42″W. (2) y ubicado en una región deshabitada cerca de 600 millas (unos 966 kilómetros) al suroeste de la ciudad de Anchorage. (3)

Actualmente, el Observatorio Vulcanológico de Alaska ha emitido este martes la alerta "roja" por la erupción del volcán Pavlof, que ha aumentado su intensidad durante las últimas horas, provocando columnas de humo y cenizas de más de 7.000 metros de altitud. (3)

Lo interesante de este volcán es que puede estar en erupción durante semanas o incluso meses, lo que nos da a pensar que existe en su interior gran concentración de presión en su cámara magmática.

Puedes descargar una Ficha Técnica sobre este volcán haciendo uso de nuestros servidores en http://adf.ly/pl7Pl | cf6.co/3oVP

Si deseas ver on line al Volcán Pavlof puedes hacerlo ingresando a nuestra sección de Volcanes en 3D

Si te gustó esta información no dudes de dejarnos tus opiniones, comentarios o preguntas en nuestro blog o escríbenos a marvar26@gmail.com.

Visita nuestra FanPage en facebook.com/cienciaygeofisica

Referencias Bibliograficas

(1) http://en.wikipedia.org/wiki/Mount_Pavlof
(2) Alaskan & Hawaii P1500s - the Ultras
(3) http://www.20minutos.es/noticia/2157570/0/alerta-roja/alaska-erupcion/volcan-pavlof/

LA REVOLUCIÓN DE LA IA EN LA INTERPRETACIÓN DE DATOS SÍSMICOS

En la industria del petróleo y gas, así como en la exploración geológica, la interpretación de datos sísmicos es un componente crítico para comprender la estructura y composición del subsuelo. Este proceso implica analizar minuciosamente los datos sísmicos procesados para identificar y caracterizar características geológicas como fallas, pliegues, horizontes estratigráficos y trampas potenciales de hidrocarburos.

Tradicionalmente, la interpretación de datos sísmicos ha sido una tarea ardua y propensa a errores, que requiere una gran cantidad de intervención manual y experiencia por parte de geofísicos. Sin embargo, en los últimos años, la Inteligencia Artificial (IA) ha emergido como una herramienta poderosa para automatizar y mejorar este proceso, brindando nuevas oportunidades para una interpretación más precisa, eficiente y consistente, pero siempre con intervención del profesional para un mejor trabajo interpretativo.

1.      Aprendizaje Profundo y Redes Neuronales Convolucionales

El aprendizaje profundo, una rama de la IA que se basa en redes neuronales artificiales inspiradas en el funcionamiento del cerebro humano, se ha convertido en el principal motor de la revolución en la interpretación de datos sísmicos. En particular, las redes neuronales convolucionales (CNN) han demostrado un rendimiento excepcional en tareas como la identificación de horizontes, la detección de fallas y la caracterización de facies sísmicas.

A diferencia de los métodos tradicionales basados en reglas y ecuaciones predefinidas, las CNN pueden aprender patrones complejos directamente de los datos sísmicos sin necesidad de una programación explícita. Estas redes se entrenan con grandes conjuntos de datos etiquetados por expertos, lo que les permite generalizar y aplicar lo que han aprendido a nuevos datos.

Una de las principales ventajas de las CNN es su capacidad para manejar datos de alta dimensionalidad, como los volúmenes sísmicos tridimensionales. Mediante la aplicación de convoluciones y capas de procesamiento jerárquicas, estas redes pueden capturar características locales y globales de los datos, lo que facilita la identificación de patrones y estructuras geológicas.

2.      Identificación de Horizontes y Detección de Fallas

Uno de los usos más extendidos de la IA en la interpretación de datos sísmicos es la identificación de horizontes y la detección de fallas. Los horizontes son superficies que representan límites estratigráficos o interfaces entre diferentes tipos de rocas, mientras que las fallas son fracturas o discontinuidades en la roca que pueden ser indicadores de la presencia de hidrocarburos.

Las CNN han demostrado una capacidad excepcional para identificar estos rasgos geológicos de manera automática y precisa. También con el entrenamiento con conjuntos de datos etiquetados, estas redes pueden aprender a reconocer patrones y características asociadas con horizontes y fallas, lo que facilita su detección en nuevos datos sísmicos.

Además, las CNN pueden combinar información de múltiples atributos sísmicos, como la amplitud, la fase y la frecuencia, para mejorar la precisión de la interpretación. Esto reduce la necesidad de una interpretación manual exhaustiva y permite a los geofísicos centrarse en áreas más complejas o ambiguas.

3.      Caracterización de Facies Sísmicas

La caracterización de facies sísmicas es otro campo en el que la IA está teniendo un impacto significativo. Las facies sísmicas son patrones de reflexión que se correlacionan con diferentes tipos de rocas o fluidos en el subsuelo, y su identificación es crucial para la evaluación de reservorios y la exploración de hidrocarburos.

Las CNN y otras técnicas de aprendizaje profundo se están utilizando para clasificar automáticamente las facies sísmicas con base en sus características de amplitud, frecuencia y continuidad. Estas redes pueden aprender a reconocer patrones complejos y sutiles que pueden pasar desapercibidos para los intérpretes humanos, mejorando la precisión y la consistencia de la caracterización.

Además, la IA también se está utilizando para integrar información de múltiples fuentes, como datos de pozos, registros sísmicos y atributos geológicos, para mejorar aún más la caracterización de facies. Esto permite una comprensión más completa de la distribución de litologías y fluidos en el subsuelo.

4.      Visualización e Interpretación Asistida

Además de la interpretación automática, la IA también está desempeñando un papel importante en la visualización y la interpretación asistida de datos sísmicos. Las herramientas de visualización avanzadas, como la representación en 3D y la realidad virtual, se están integrando con técnicas de aprendizaje profundo para brindar una experiencia más intuitiva y efectiva a los geofísicos.

Por ejemplo, las CNN pueden utilizarse para resaltar automáticamente características geológicas importantes en las visualizaciones 3D, facilitando su identificación por parte de los intérpretes. Además, las redes neuronales pueden proporcionar sugerencias y recomendaciones en tiempo real durante el proceso de interpretación, reduciendo la carga cognitiva y mejorando la eficiencia.

A pesar de su enorme potencial, la aplicación de la IA en la interpretación de datos sísmicos también plantea desafíos y consideraciones importantes.

Uno de los principales desafíos es la disponibilidad de datos de entrenamiento de alta calidad y etiquetados de manera precisa. En la industria del petróleo y el gas, los conjuntos de datos sísmicos a menudo son confidenciales y pueden estar sesgados o incompletos. Esto puede dificultar el entrenamiento efectivo de las redes neuronales y afectar su rendimiento.

Otro desafío es la interpretabilidad y la explicabilidad de los modelos de IA. Muchas redes neuronales funcionan como "cajas negras", lo que puede dificultar la comprensión de cómo se llegan a ciertas conclusiones o predicciones. Esto puede generar desconfianza y reticencia en la adopción de la IA por parte de los geofísicos y otros profesionales.

Además, existen preocupaciones sobre la ética y la privacidad en torno a la aplicación de la IA en la interpretación de datos sísmicos. Por ejemplo, el uso de datos sísmicos podría plantear problemas de privacidad si se recopilan sin el consentimiento adecuado o se utilizan de manera indebida.

GEOFÍSICA!

Atualmente em nosso planeta há inúmeros terremotos registrados anualmente em todo o mundo, a maioria deles acontecem por causa do que os cientistas e geofísicos chamar como o Anel de Fogo do Pacífico, como neste lugar são normalmente zonas de subducção do mundo, causando uma atividade sísmica e vulcânica.
Além disso, também compreender que os tremores de terra que ocorrem em que a área é o produto de placa tectônica, o movimento e colisão entre si, que existe entre cada uma das placas da crosta.

Se falamos sobre os terremotos que ocorrem no nosso planeta também pode mencionar que os terremotos são dadas por uma outra classe de fenômenos, tais como deslizamentos de terra, explosões, ou queda de meteoritos. Mas em lugares como o planeta distante, onde a atividade sísmica não é comum, por isso se originou? Devido a quê?

Ultimamente esta menção no mundo que estão ocorrendo terremotos na Antártida, como podemos explicar a origem desses terremotos? Eles estão relacionados a uma fonte altamente sísmica que até mesmo o homem não sabe? Nosso blog vai mostrar aos nossos leitores o que a fonte desses sísmica sísmico.

Atualmente tem havido um terremoto de 7,3 graus na escala Richter que atingiu um setor da Antarctica e gerou grandes ondas, mas felizmente eles não eram fortes o suficiente para formar um tsunami na região. Diz-se também que este grande terremoto poderia ser registrado em todo o mundo. Fonte: http://www.jornadaonline.com/Contenidos/Contenidos.asp?id=99306

É evidente, em alto grau, que o continente Antártico não é só gelo e neve, ele oferece uma plataforma com essas características, mas não se deixe enganar pelo que a morfologia da Antártida. Uma vez que este continente gelado tem realmente uma atividade vulcânica e sísmica atual, embora possa parecer um pouco difícil de acreditar, é verdade.

A atividade vulcânica da região de gelo é devido à presença ou existência de um abismo crescente no Mar Bransfield, devido à complexa dinâmica de placas e microplacas que existem, além das placas convergem Antártico, Pacífico e Atlântico , Escócia placa ea antiga placa de Phoenix, que foram gerados e mais geralmente conhecido, o valor de dez e três à tona vulcões submarinos, como é o Volcan Deception, Pinguim e Bridgeman.

No entanto, vale ressaltar que a atividade sísmica do continente antártico é devido à expansão da fenda Bransfield com terremotos de magnitude superior a 6 graus na escala Richter eo subducção norte da Ilhas Shetland do Sul gerando terremotos profundos . Fonte: http://www2.uca.es/grup-invest/antartida/presentacion/idecepcion.htm

Na minha opinião você pode fazer um teste para começar a estudar esses fenômenos naturais que têm em mãos um mapa sísmico da área para iniciar os estudos sobre a freqüência sísmica do continente gelado.

Assim, deste modo, vamos entender melhor o que o mecanismo da formação de terremotos nesta região remota, que tem um alto grau de atividade morfológica, tectônica e vulcânica.

Para quaisquer dúvidas ou comentários, não se esqueça que você pode escrever no nosso blog ou e-mail para marvar26@gmail.com.



GEOFISICA

Software Geofísico
Es bien cierto que una de las herramientas importantes para un Geofísico son los software, programas o paquetes y que éstos mismos nos ayudan en el trabajo en si ya sea en el campo o en el laboratorio.

Estos paquetes o software pueden tener una variada gama de opciones y procesamientos los cuales ayudan en el trabajo, y es correcto afirmar que más de una vez necesitamos de éstos softwares para poder realizar un buen  informe en nuestro trabajo final. Pero elegir el programa correcto d6ebe depender de varios factores como por ejemplo nuestro buen entendimiento del paquete, resultados óptimos y confiables, y por supuesto del tipo y calidad de interpretación que nosotros mismos aportemos al trabajo usando el software.
Software geofisicos existen mucbos.

La dicerencia entre cada uno de ellos varía dependiendo del programador y los conocimientos en campo que el desarrollador pueda tener con respecto al análisis que en Geofísica se desee dar. En todas las áreas de la Geofísica existen software para cada tarea. Los más comunes que vamos a encontrar son en las áreas de sismología, prospección, geotecnia, mecánica de suelos y rocas, meteorología y climatología y  volcanología. Mas bien el acceso a la mayoría de ellos es difícil, ya que unos cuentan con licencia de pago, software propios de una empresa en sí. Los restantes son de uso público como los freeware o las versiones demo donde podemos probar el funcionamiento, apariencia y forma de trabajar del paquete para luego adquidirlos al realizar un pago por ello.

Ahora, lo que también es cierto que obligadamente necesitamos trabajar con software geofísicos cuando tenemos que realizar cálculos extensos y difíciles de desarrollar manualmente. No hay de otra que recurrir al uso de un paquete. Tareas como migración de datos, cálculos matemáticos, teoremas matematicos, convulacion de datos, operaciones con matrices, deconvulacion de datos, inversión de datos, corrección de datos, cálculos infinitesimales, digitalización de puntos, correcciones topográficas, análisis de fourier, transformadas o análisis espectrales son solo algunos ejemplos de la obligación que tenemos de el de usar un software que nos ayude a desarrollar esas tareas.

Podemos clasificar también los software geofísicos de diferentes formas. Entre ellas podemos encontrar software de visualización de datos, visualización de imágenes, de procesamiento y análisis de datos geofisicos, de modelamiento geofisico. El uso de ellos dependerá del tipo de trabajo que estemos realizando y evidentemente del área de la Geofísica en el que estemos trabajando.

Lo que debemos tener siempre presente es que más que una herramienta de apoyo para nuestros análisis no debemos confiarnos en todo al software. Somos nosotros mismos quienes debemos dar la interpretación geofisica necesaria y eso solo lo obtenemos con la experiencia.

TAMBIÉN TE INTERESARÁ
Monitoreo Geofísico | Alfred Wegener. ¿Geofisico o Geologo? | Software Geofísico | La Geofísica y las Matemáticas | Desastres naturales y desastres geofísicos | Existencia de ondas gravitacionales | ¿Cómo se transmite el calor interno de la Tierra? | Desarrollo de magma | Monitoreo Geofísico
GEOFISICA - PERSONAJE GEOFÍSICO

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

"...la corteza continental es uno de los dos tipos de corteza en la Tierra, siendo el otro la corteza oceánica. Los continentes y sus plataformas continentales están compuestos de corteza continental..." - Wikipedia

Alfred Wegener
En la historia de los grandes investigadores sobre las ciencia de la tierra destacan varios personajes que aportaron a la investigación de los diferentes fenómenos naturales que abordan a nuestro planeta en áreas de la sismología, tectonofísica, meteorología o vulcanología, todo dentro del campo de estudio de la geofísica.

Alfred Wegener no escapa a este grupo ilustre de personajes ejemplares que aportaron su conocimiento en las áreas de la meteorología y la tectonofísica hoy en día, ya que con sus antiguas hipótesis sobre la deriva continental siguen dando ecos en la actualidad. Varias personas lo catalogan como uno de los padres de la Geología, gracias a su hipótesis sobre la deriva continental, ya que investigó y analizó los restos fosilizados sobre las cuencas y zonas costeras algunos continentes llegando a la conclusión de que tenían una gran similitud en sus muestras.

Esto lo llevaría a pensar que alguna vez los continentes actuales no se encontraban separados, sino todo lo contrario, se mantenían unidos, pero debido al dinamismo de la Tierra y a las fuertes corrientes de convección fragmentaron el área continental desplazándose y alejándose una de las otras hasta ver la actual forma que tienen nuestros continentes.

Alfred Wegener tuvo esa visión.

Nación en Berlín, Alemania, en 1880, fue meteorólogo y geofísico, donde propuso la teoría de la deriva continental. Se doctoró en Astronomía por la Universidad de Berlín, pero centró su campo de estudio en la geofísica y la meteorología. (1)

La meteorología tenía una vigencia fuerte en esos tiempos, se practicaba matemática pura, y era una de las ramas actuales de la geofísica contemporánea de esos tiempos. Centró sus conocimientos a la Meteorología estudiando la circulación del aire en las zonas polares a través de expediciones a Groenlandia.  



En su apogeo en el estudio de la Geofísica tuvo que abandonarlo un tiempo debido a la Primera Guerra Mundial. Afortunadamente su actividad bélica en el ejército duro poco tiempo, ya que fue herido en combate. Pero gracias a sus conocimientos en Meteorología, en la milicia tuvo que estar viajando por toda Alemania visitando las diferentes estaciones meteorológicas. (1)

Pero su dedicación a la Geofísica, lo llevó a dar cátedras en la Universidad de Graz, en Austria. Claro está enseñando Meteorología.

Pueden visitar su Biografía haciendo clic en Biografía de Alfred Wegener.

Wegener construyó la primera estación meteorológica en Groenlandia, Danmarkshavn. (1)
Algunas cosas que nos dejó Alfred Wegener fueron su libro de Termodinámica de la Atmósfera entre 1909 y 1910, sus primeras ideas públicas sobre la deriva continental, su obra sobre el origen de los continentes y océanos, publicando también alrededor de 20 trabajos meteorológicos y geofísicos. También trabajó en el libro Los climas del pasado geológico.

Algunos reconocimientos que fueron presentados en su honor fueron El Instituto Alfred Wegener de investigación Polar y marina, se le dio a un cráter de impacto en Marte a Wegener y la península Wegener, cerca de Ummannaq en Groenlandia, donde falleció el 2 de Noviembre de 1930.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31
REFERENCIAS BIBLIOGRAFICAS
(1) https://es.wikipedia.org/wiki/Alfred_Wegener

EL PAPEL CRUCIAL DE LA INTELIGENCIA ARTIFICIAL EN EL ACONDICIONAMIENTO DE DATOS SÍSMICOS

En la industria del petróleo y gas, así como en la exploración geológica, la obtención de datos sísmicos de alta calidad es fundamental para una interpretación precisa de la estructura y composición del subsuelo. Sin embargo, los datos sísmicos crudos a menudo se ven afectados por una variedad de fuentes de ruido y artefactos que pueden enmascarar o distorsionar las señales de interés. Es en este punto donde el acondicionamiento de datos sísmicos, el proceso de eliminación de ruido y corrección de imperfecciones, se vuelve crucial. Tradicionalmente, este proceso se ha realizado mediante técnicas de procesamiento de señales y filtrado basadas en reglas y ecuaciones predefinidas. No obstante, actualmente, la Inteligencia Artificial (IA) está surgiendo como una herramienta poderosa para mejorar y automatizar el acondicionamiento de datos sísmicos, brindando nuevas oportunidades para una calidad de datos superior y una interpretación más precisa.

FUENTES DE RUIDO Y ARTEFACTOS EN DATOS SÍSMICOS

Antes de abordar el papel de la IA en el acondicionamiento de datos sísmicos, es importante comprender las diversas fuentes de ruido y artefactos que pueden afectar los datos crudos.

Algunas de las fuentes más comunes incluyen:

Ruido Ambiental: Causado por actividades humanas, como el tráfico, la maquinaria industrial o las construcciones cercanas, así como por fenómenos naturales como el viento, la lluvia o las olas.

Ruido Instrumental: Generado por los propios dispositivos de adquisición sísmica, como los geófonos o los hidrófonos, debido a problemas electrónicos, interferencia electromagnética o calibración inadecuada.

Múltiples: Reflexiones sísmicas que se propagan por trayectorias más largas y se superponen con las señales de interés, creando artefactos y confusión en los datos.

Efectos de Propagación: Distorsiones causadas por la propagación de las ondas sísmicas a través de medios heterogéneos y complejos, como la amortiguación, la dispersión y la difracción.

Artefactos de Adquisición: Problemas relacionados con la geometría de la adquisición, como trazas faltantes, respuesta de offset variable o errores de posicionamiento.

Estas fuentes de ruido y artefactos pueden enmascarar características geológicas importantes, dificultar la interpretación y conducir a decisiones erróneas en la exploración y explotación de recursos. Por lo tanto, el acondicionamiento de datos sísmicos es un paso crítico que debe abordarse de manera efectiva.

ENFOQUES TRADICIONALES DE ACONDICIONAMIENTO DE DATOS

Históricamente, el acondicionamiento de datos sísmicos se ha realizado mediante técnicas de procesamiento de señales y filtrado basadas en reglas y ecuaciones predefinidas. Algunas de estas técnicas incluyen:

Filtrado de Frecuencia: Eliminación de componentes de frecuencia no deseados mediante filtros de paso bajo, paso alto o paso banda.

Deconvolución: Proceso para eliminar efectos de propagación y recuperar la forma de onda original.

Sustracción de Múltiples: Identificación y eliminación de múltiples mediante técnicas de modelado y sustracción adaptativa.

Interpolación de Trazas Faltantes: Estimación de trazas faltantes o dañadas mediante interpolación espacial o interpolación de ondículas.

Si bien estas técnicas han sido ampliamente utilizadas y han demostrado cierto grado de efectividad, también presentan limitaciones significativas. Muchas de ellas se basan en supuestos simplificados sobre las características del ruido y los artefactos, lo que puede resultar en una eliminación incompleta o en la introducción de nuevos artefactos. Además, estas técnicas a menudo requieren una intervención manual y ajustes por parte de expertos, lo que puede ser un proceso tedioso y propenso a errores.

LA REVOLUCIÓN DE LA INTELIGENCIA ARTIFICIAL EN EL ACONDICIONAMIENTO DE DATOS SÍSMICOS

Actualmente, la Inteligencia Artificial, y en particular el aprendizaje profundo, está revolucionado el acondicionamiento de datos sísmicos, ofreciendo enfoques más precisos, adaptables y automatizados. Las redes neuronales convolucionales (CNN) y otras arquitecturas de aprendizaje profundo han demostrado un rendimiento excepcional en tareas como la eliminación de ruido, la corrección de amortiguación, la supresión de múltiples y la interpolación de trazas faltantes.

A diferencia de los métodos tradicionales basados en reglas, las redes neuronales pueden aprender patrones complejos directamente de los datos, sin necesidad de una programación explícita de ecuaciones o supuestos simplificados. Mediante el entrenamiento con grandes conjuntos de datos etiquetados, estas redes pueden generalizar y aplicar lo que han aprendido a nuevos datos sísmicos, adaptándose de manera efectiva a diferentes entornos geológicos y condiciones de adquisición.

ELIMINACIÓN DE RUIDO CON REDES NEURONALES

Una de las aplicaciones más prometedoras de la IA en el acondicionamiento de datos sísmicos es la eliminación de ruido. Las CNN y otras arquitecturas de redes neuronales han demostrado una capacidad excepcional para separar el ruido de las señales sísmicas útiles, preservando al mismo tiempo los detalles y características importantes.

Estas redes pueden aprender a reconocer patrones de ruido complejos y sutiles, como el ruido aleatorio, el ruido coherente o el ruido de fondo, y eliminarlos de manera efectiva. Además, pueden adaptarse a diferentes tipos de ruido y aprender a separar múltiples fuentes simultáneas de ruido.

Un enfoque común es el uso de redes neuronales convolucionales autocodificadoras, que se entrenan para reconstruir los datos de entrada limpios a partir de datos ruidosos. Estas redes aprenden a mapear las características de ruido y señal en representaciones separadas, lo que permite una eliminación de ruido efectiva sin comprometer la integridad de las señales sísmicas.

CORRECCIÓN DE AMORTIGUACIÓN Y SUPRESIÓN DE MÚLTIPLES

Otra área en la que la IA está teniendo un impacto significativo es la corrección de amortiguación y la supresión de múltiples. La amortiguación es un fenómeno que ocurre cuando las ondas sísmicas pierden energía a medida que viajan a través de la Tierra, lo que puede distorsionar las señales y dificultar su interpretación. Las múltiples, por otro lado, son reflexiones sísmicas que se superponen con las señales de interés, creando confusión en el análisis en la corrección.

Las redes neuronales pueden aprender a reconocer y compensar los efectos de la amortiguación y las múltiples, mejorando la calidad de los datos sísmicos resultantes. Esto se logra mediante el entrenamiento con conjuntos de datos etiquetados que incluyen ejemplos de datos amortiguados o contaminados por múltiples, junto con sus contrapartes corregidas o suprimidas.

Las CNN están demostrado un rendimiento sobresaliente en estas tareas, aprovechando su capacidad para capturar características locales y globales de los datos. Además, se están explorando enfoques basados en redes generativas antagónicas (GAN) y redes neuronales recurrentes (RNN) para abordar desafíos más complejos en la corrección de amortiguación y la supresión de múltiples


GEOFÍSICA + GEOTERMIA


La Tierra, un planeta dinámico desde hace miles de años, nos ha demostrado su actividad y su energía a través de diferentes manifestaciones físicas como terremotos, erupciones volcánicas o por el movimiento de sus placas tectónicas. Todas estas manifestaciones tienen su origen desde el interior de nuestro planeta. A varios cientos de kilómetros de profundidad, la Tierra es un planeta caliente que se encuentra en movimiento debido a las altas presiones y temperaturas en su interior, va transmitiendo calor a través de los diferentes materiales y medios circundantes hasta llegar a la Litosfera donde se va enfriándose gradualmente. ¿Pero cómo se transmite el calor del interior de la Tierra?

El globo terrestre está compuesto por rocas, metales y elementos químicos que conforman la geoesfera, dividida en tres capas principales. La corteza que mide aproximadamente 70 kilómetros; el manto (el estrato intermedio) que está formado por rocas en estado semisólido y líquido y tiene un espesor de 3.000 km y, por último, la capa más profunda, el núcleo donde se registran las presiones y temperaturas más altas de la Tierra, de hasta 6.000 grados centígrados.

Cuando se formó el Planeta, la corteza terrestre se fue enfriando hasta solidificarse. No obstante, las capas inferiores no lo hicieron tan rápidamente ya que la corteza funciona como aislante, permitiendo que el manto y el núcleo mantengan sus altas temperaturas. De esta manera, la Tierra funciona como una gran máquina térmica, capaz de generar su propio calor y conservarlo en el interior del globo. (1)

Pero el calor que se concentra en su interior no es estático sino, se encuentra activamente en movimiento transmitiéndose desde el núcleo al manto de diferentes maneras. Las formas en la que se transmite el calor de la Tierra son por conducción, convección y radiación. Sin embargo, los tres tienen diferente grado de importancia en las diferentes capas de la Tierra: en la corteza el principal medio de transporte de calor es la conducción mientras que en el manto lo es la convección y radiación.

La conducción es la forma como se transporta el calor de un cuerpo más caliente a uno más frío con el cual se encuentra en contacto. La eficiencia de ésta depende de una propiedad de los materiales que se llama conductividad térmica y que nos dice cuál será la diferencia de temperatura provocada por un flujo de calor: a mayor conductividad menor será la diferencia de temperatura a través del material. Un ejemplo de buen conductor lo es una barra de metal, la cual al ser calentada en uno de sus extremos inmediatamente conducirá el calor hasta el otro extremo. Por otro lado, un ejemplo de mal conductor lo sería la madera, la cerámica y el aire.

La convección es un proceso un poco más complejo que se da solamente en fluidos (líquidos y gases). Al ser calentada la parte inferior de un fluido, ésta se expandirá y se volverá menos densa que la parte superior más fría, por lo cual tenderá a subir, con lo que la parte fría quedará ahora en contacto con la fuente de calor repitiéndose de esta forma el proceso y dando origen a lo que se llama celdas de convección, en las cuales existen corrientes ascendentes y descendentes. Este mecanismo se va a generar a partir de un cierto valor de la diferencia de temperatura y depende de la viscosidad y densidad del fluido.

La radiación es una forma de transporte de calor que es importante a temperaturas altas; en realidad todos los cuerpos que tienen temperatura por arriba del cero absoluto (cero grados Kelvin o -273.15°C) emiten radiación, pero la frecuencia de la radiación emitida es proporcional a la temperatura del material: los seres humanos emitimos radiación en el infrarrojo y un trozo de hierro calentado a temperaturas muy altas empezará a emitir en el espectro visible.

De esta forma observamos que el transporte de calor en el interior de la Tierra va a depender de la temperatura y de las características del material. La corteza se comporta como un sólido y tiene temperaturas relativamente bajas. El manto se comporta como un fluido y como la convección es mucho más eficiente en este caso, ése es el principal medio de transporte, aun cuando las temperaturas relativamente altas hacen posible que la energía también se transporte por medio de la radiación. (2)

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica

REFERENCIAS BIBLIOGRAFICAS
(1) https://www.sostenibilidadedp.es/pages/index/el-calor-de-la-tierra
(2) http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen2/ciencia3/058/htm/sec_4.htm

TAMBIÉN TE INTERESARÁ
Monitoreo Geofísico | Alfred Wegener. ¿Geofisico o Geologo? | Software Geofísico | La Geofísica y las Matemáticas | Desastres naturales y desastres geofísicos | Existencia de ondas gravitacionales | ¿Cómo se transmite el calor interno de la Tierra? | Desarrollo de magma | Monitoreo Geofísico
GEOFÍSICA

Versão em espanhol | Português | Inglês

" O objeto de estudo da geofísica é cobrir todos os fenômenos relacionados com a estrutura , as condições físicas e história evolutiva da Terra " - Wikipedia

Hoje todos nós sabemos ou vimos como a erupção de um vulcão, também , o material ejetado da superfície e da atmosfera. Mas nós sabemos o que acontece antes de uma erupção vulcânica ou os mecanismos por trás de uma erupção vulcânica pré- ocorre ? Você sabe o que algumas pessoas chamam as vibrações vulcânicas ou em outras palavras, os tremores vulcânicos ?

Nossa equipe vai ensinar de maneira explícita os conceitos e mecanismos que nos ajudam a reconhecer o estágio de pré- eruptiva para determinar se um vulcão está perto de uma possível erupção vulcânica.

Para começar , devemos ter em mente que cada vulcão tem um comportamento diferente , pois há vários tipos de vulcão e diferentes tipos de erupções vulcânicas.

Para estudar o comportamento de um vulcão que entendemos vai entrar em erupção em um determinado futuro , vamos precisar de equipamento para nos ajudar a monitorar a atividade sísmica do próprio vulcão. Estes instrumentos de medição são sismógrafos , ou possivelmente equipamento de telemetria fixa ou portátil , que serão localizados em locais estratégicos ao redor do vulcão em áreas de estudo . O que você vai estudar os terremotos vulcânicos foram registrados em nossas sismogramas . Mas que tipos de terremotos são aqueles que estudam nos sismogramas ? Comparado a terremotos tectônicas , os terremotos vulcânicos não são perceptíveis pelo ser humano , de modo que eles são de fato aqueles que estudam os terremotos.

Neste post vamos estudar os tremores vulcânicos ou vibrações são chamados Sites vulcânicas. Entenda que os terremotos vulcânicos são causados ​​pelo movimento de fluidos no sistema vulcânico. (1) Isto é, pelo movimento de magma dentro do vulcão.

Esses tremores podem ocorrer por magma atinge as paredes da câmara de magma ou na tomada, explosões de bolsões de gás ou golpes de blocos sólidos arrancadas e arrastadas em ascensão contra as paredes da abertura vulcânica produzir um tipo de características de vibração , a qual , quando detectado pelo seismometers pode ser utilizado para anunciar a libertação de magma do lado de fora . (2)

Agora, tremores vulcânicos são caracterizadas pela chegada de ondas persistentes ou sustentadas ao longo do tempo (1) no sismograma . Figura A deste post pode ver o vulcão Galeras Seismogram na Colômbia , há um tremor vulcânico registrado em cor verde para identificação.

Agora , se o sinal mantém uma frequência constante , estamos na presença de um tremor de harmónica . (1)

Se você gostou deste post , não esqueça de escrever seus comentários em nosso blog ou pelo menos enviar um email para marvar26@gmail.com

(A) Vulcão Galeras Seismogram , Colômbia

Referência bibliográfica

(1) https://www.uclm.es/profesorado/egcardenas/tremor.htm
(2) http://es.m.wikipedia.org/wiki/Tremor_ (vulcanolog%C3%ADA)

Visite nossa FanPage no facebook.com/cienciaygeofisica

GEOFISICA - INVESTIGACIÓN GEOFÍSICA

Evidencia de tsunami en una línea estratigráfica
En nuestro planeta siempre se han originado terremotos, algunos acompañados de tsunamis, esto debido a la interacción de las placas tectónicas presentes en el planeta o por la liberación de energía acumulada de fallas geológicas existentes a lo largo de la litosfera. Estos eventos sísmicos se han registrado desde hace mucho tiempo durante la existencia de los sismógrafos que nos permitieron registrar datos importantes de todos los eventos sísmicos originados en nuestro planeta; gracias a ello pudimos conocer bastante sobre estos eventos, como las velocidades de las ondas sísmicas, su tiempo de arribo, la fuente sísmica, su aceleración  y su origen.

Ahora, existen también los llamados terremotos históricos, que no pudieron ser registrados por los sismógrafos ya que en ese tiempo no existían, entonces, como podemos determinar la existencia de esos terremotos en algún lugar del planeta?

La analogía de causa y consecuencia  nos lleva a determinar que cuando se produce un evento sísmico siempre dejará marcado algún dato procedente de un evento existente en el pasado, lo que llamamos como evidencia científica y testimonios sobre lo ocurrido.

Las evidencias científicas existentes de esos terremotos históricos o los terremotos que ocurrieron antes de la existencia de los sismógrafos, serán aquellas marcas geológicas dejadas por el evento sísmico en si. Esas marcas pueden depender del origen de la fuente sísmica, si el evento ocurrió en una línea de costa, las evidencias geológicas tales como muestras de caracoles o algunos fósiles localizados en zonas que no deberían estar allí existen, corresponderían a un posible tsunami. Otra marca geológica  podríamos obtenerlas estudiando la estratigrafía de una zona en particular, por la presencia del tipo de suelo no congruente con la estratigrafía local, esto puede ocurrir debido a que si existió un evento sísmico de gran proporción, habrá originado un tsunami que impacto en una línea de costa arrastrando consigo material de suelo y depositado en una zona diferente la cual no es congruente con la estratigrafía local. Para determinar el tiempo aproximado en el cual se produjo este evento sísmico, se utiliza la datación de carbono 14 sobre muestras del carbón vegetal existente en el perfil estratigráfico que se desea estudiar. 

Otra evidencia científica que se puede estudiar cuando se originó un gran evento sísmico, es la geología de los llamados bosques fantasmas, junto con registros escritos de otros lugares sobre un evento sísmico determinado. Esto es debido a que cuando existe la presencia de bosques cercanos a la línea de costa y cuando existen zonas de subducción por debajo de estos bosques, la acumulación de energía entre las placas que producen subducción se libera produciendo un evento sísmico que traerá como consecuencia un tsunami que inundará el bosque cercano a la línea de costa, arrastrando todo tipo de material de suelo hacia el bosque, y por exposición al agua salada, estos árboles mueren y un lodo intermareal se acumula cubriendo los árboles muertos, con el pasar de las décadas, el suelo de dicha zona vuelve a levantarse, pero esos árboles ya quedan como un registro geológico de la existencia de un evento sísmico anterior. 

Una manera de estudiar estos bosques fantasmas para determinar la presencia de algún evento sísmico histórico, es analizando los anillos de los arboles de los bosques fantasmas y de árboles testigos existentes más arriba de la línea de costa, que sobrevivieron al terremoto. Al estudiar los anillos de los árboles se puede determinar la edad de la muerte del árbol producido por el tsunami y de esa manera determinar una fecha tentativa o aproximada de cuando se originó ese terremoto histórico.

Como evidencias científicas también son válidas los testimonios escritos que se dejaron por varias generaciones en el pasado, ilustrándonos lo sucedido en aquel tiempo estudiando sus artes o costumbres de las personas que vivían en ese tiempo. E incluso se puede recoger datos escritos de otros lugares lejanos donde hubo un impacto por el tsunami originado por el terremoto, ya que esto nos traerá una fecha del registro de observación del tsunami, como el día, mes, año y hora en que se registro o impactó el tsunami en una zona diferente al de la fuente sísmica.

Un ejemplo bien claro de lo que se está comentando son estudios de evidencias para grandes terremotos  y tsunamis en el pacifico noroeste de los EE.UU. 

Entonces, como conclusión podemos confirmar que se pueden estudiar los grandes terremotos históricos teniendo en cuenta lo siguiente:

1. La presencia de árboles o bosques fantasmas en una línea de costa, que nos ayudará en la determinación de la edad de la muerte de los árboles.
2. Los estudios estratigráficos de una zona en particular, analizando los diferentes substratos presentes.
3. Testimonios escritos recogidos sobre terremotos antiguos.
4. Dataciones de carbono 14 sobre materiales que no deberían estar presentes en un perfil estratigráfico.

Los puedes ver también en este video gracias a nuestros amigos de IRIS 



Estudiar los volcanes existentes en cualquier área o región en forma remota o insitu, recolectando datos de campo, muestras de ceniza para su análisis químico o registrando los sismos volcano tectónicos producidos por el volcán en sí es muy interesante y emocionante. ¿Pero que pasaría si recolectas toda esa información en una sola data y lo que generas en forma virtual donde puedes manipular los datos directamente?

Todo geofísico está en la capacidad de poder hacerlo, con los conocimientos técnicos adecuados se pueden realizar simulaciones muy diferente a las visualizaciones 3D generados por computadora. De esta forma se puede obtener una idea más clara de lo que está pasando en el volcán. Y si a eso le agregamos la simulación en tiempo real sería mucho mejor. La data geofísica obtenida en campo es lo que recuperamos en una hora y tiempo determinado para posteriormente transformarla en una data más sólida y consolidarla en una imagen 3D más realista. Datos GPS, latitudes y longitudes de los sismos, magnitudes o profundidades son importantes para el desarrollo de esta herramienta visual más impactante y profesional.

Estos modelos nos ayudan a entender mejor la evolución de la sismicidad bajo el volcán y cómo esta va migrando en las inmediaciones del edifico volcánico. La distribución de los sismos modelados nos muestra la actividad sísmica relacionada a procesos de fractura de rocas originados por la dinámica eruptiva del volcán.

Una de las herramientas que podemos utilizar para el desarrollo de volcanes en 3D es el Software ArcGis con su visor 3D de Esri.



El vídeo mostrado es la presentación del Mapa Sísmico del volcán Misti en Perú - Arequipa donde se puede observar claramente los hipocentros de los sismos con sus respectivas profundidades, claro ejemplo de la herramienta fundamental para el análisis, estudio, evolución y comportamiento de un volcán.

Puedes ver más Volcanes en 3D ingresando desde aquí

Descarga nuestro e-book acerca del desarrollo de volcanes en 3D en nuestra tienda online!

Mantente al tanto ya que estaremos actualizando constantemente este post.

REFERENCIAS.
Instituto Geofísico del Perú

TAMBIÉN TE INTERESARÁ
Monitoreo Geofísico | Alfred Wegener. ¿Geofisico o Geologo? | Software Geofísico | La Geofísica y las Matemáticas | Desastres naturales y desastres geofísicos | Existencia de ondas gravitacionales | ¿Cómo se transmite el calor interno de la Tierra? | Desarrollo de magma | Monitoreo Geofísico