Contacto : cgeofisica@gmail.com

Ciencia y Geofísica

Grupo IGPERU

Ciencia y Geofísica

facebook
instagram
linkein
whatsapp
  • Meteorología y Climatología

    Estudiamos el comportamiento de los fenómenos atmosféricos!

  • Volcanología

    Estudiamos el comportamiento de los volcánes!

  • Prospección Geofísica

    Estudiamos técnicas físicas y matemáticas, aplicadas a la exploración del subsuelo para la búsqueda de recursos naturales y yacimientos minerales.

  • Geotermia

    Estudiamos los fenómenos térmicos que tienen lugar en el interior de la Tierra.

  • Tectonofísica

    Estudiamos la dinámica y cinemática de los procesos que deforman a la litosfera mediante métodos cuantitativos.

  • Geomagnetismo

    Estudiamos las propiedades magnéticas de la Tierra.

  • Inteligencia Artificial

    Aplicando los conocimientos en Inteligencia Artificial para convertir la Geofísica más inteligente.

Mostrando las entradas para la consulta gravedad ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas
Mostrando las entradas para la consulta gravedad ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas
GEOFISICA

"Últimamente en estos días las condiciones meteorológicas de ciertos lugares de nuestro planeta se están manifestando creando fenómenos raros pero comunes que normalmente no pueden pasar desapercibidos por las personas. Es así, que en diversos lugares se están manifestando (aparentemente) "nubes en forma de tsunamis", llegando a zonas costeras e incluso al interior de ciudades donde existe la presencia de montañas.

Estos fenómenos meteorológicos en cierta forma tienen su explicación científica razonable donde la Geofísica fácilmente puede explicar."

¿Porque ocurre este fenómeno?

Nuestro equipo hará un análisis y publicará varios vídeos en nuestra galería para que puedas apreciar con más detalle este fenómeno donde te explicaremos ahora.

Para que este fenómeno se manifieste es necesario contar con ciertas condiciones meteorológicas, citando a la humedad, temperatura, al viento marítimo cuya dirección es de mar a tierra cargado de humedad, aguas relativamente calientes y también dependiendo de la zona la presencia de montañas.
En realidad este fenómeno como creen muchos no son nubes tratandose en realidad de la formación de niebla que por acción del viento se desplaza, y que curiosamente lo hace en forma de tsunami, que en varias ocaciones asustan a los pobladores.

Inicialmente mar adentro, el aire alrededor presenta una cierta cantidad de humedad, pero cuando la temperatura desciende considerablemente, el aire no puede contener ese grado de humedad lográndose la condensación en forma de niebla, y gracias al viento marítimo transporta esa niebla a la costa y dependiendo de las condiciones geográficas y/o atmosféricas de la costa, la niebla puede presentar la forma de olas de tsunamis o cascadas.

Lo curioso de este fenómeno es que solo se manifiesta en ciertos lugares del planeta (en forma de tsunami) el que habría que analizar la posibilidad de poder manifestarse de esa manera según la latitud y/o longitud de la zona. Realmente un fenómeno interesante con una base científica sencilla de explicar.

Algunos ejemplos de estos fenómenos meteorológicos sucedieron en Sidney, Australia, en Taiwan, en el Lago Míchigan en Estados Unidos, en Antofagasta, Chile y en las costas de Buenos Aires, claramente estas zonas presentan diferentes zonas geográficas lo que nos hace pensar que este fenómeno se debe más que todo a las condiciones meteorológicas de la zona local.

Descárgatelo en pdf

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31

GEOFISICA
Versión en Español | Portugués | Italiano | Inglés
(Actualizado al 27/08/2015)

La prospeccion dentro de la Geofisica juega un papel importante para las empresas que requieran de los servicios para realizar sondeos, exploraciones y/o prospecciones.

La prospección minera abarca una serie de trabajos relacionados con los recursos naturales, llámese minerales, gas natural, petroleo y/o agua subterránea. Para poder realizar estos estudios la Geofisica necesita de equipos especiales para interpretar o procesar los datos obtenidos en campo. Pero también y si fuera el caso, se podría contar con dispositivos más sotisficados que ayuden y sirvan como herramientas para realizar nuestro trabajo.

Así de esta manera en el rubro de la exploración de gas y petroleo se está incorporando la tecnología espacial en la prospección minera. ¿Como así?

Con la ayuda de la tecnología en robots que la ESA en conjunto con otras compañías se planea usar estos robots para la exploración de gas y petroleo, equipados con varios sistemas de monitoreo que se explicará más adelante, a lo cual hemos ppreparado 3 motivos para que las empresas piensen en trabajar con estas nuevas tecnologías.

1. El uso de robots para exploración hace más fácil el trabajo de campo y brinda mayor seguridad en cobdiciones extremas.

Esta idea ingeniosa nace de un proyecto hispano-portugués donde se le propone a la ESA, Agencia Espacial Europea, un robot explorador de gas y petroleo. El objetivo en si es crear un robot para exploraciones de estos recursos naturales, basado en la nave ExoMars. Este proyecto está formado por GMV, la universidad Politécnica de Madrid y la compañía portuguesa IDMind.

El encargado de realizar este proyecto es la Corporacion Privada vasca Tecnalia que busca fomentar la transferencia de tecnología procedente del sector espacial a funciones terrestres como la prospección de gas y petróleo. (1)

Es una idea muy buena ya que servirá vastante a este sector. Esta corporación ya ha tenido un papel destacado en la evaluación de las posibilidades de transferencia de un robot basado en la nave de la ESA ExoMars que tiene opciones de hacerse un hueco en plataformas de gas y petróleo por sus posibilidades para trabajar en entornos de difícil acceso. (1) Es asi, que a raiz de todo esto, la multinacional de hidrocarburos Total impulsa el uso de robots para trabajar en zonas de producción de hidrocarburos extremas.

2. La aplicación de nuevas tecnologías para la prospección geofísica hace de este campo más sotisficado y seguro.

Además de financiar este proyecto a traves de un concurso de duración de tres años para determinar qué robot es el más adecuado en esta clase de tareas. De esta manera incentivando a otras empresas en la inversión de nuevas tecnologías, se podrá avanzar tecnológicamente en la adecuada prospección y/o búsqueda de recursos minerales que ayuden al prospector en su tarea realizándola de una forma segura sin comprometer su bienestar en lugares extremos.

3. La aplicación de la tecnología espacial en la prospección geofisica la convierte en un área más aplicada, nueva, segura y dinámica.

Y es verdad, al utilizar la tecnología espacial en la prospección en condiciones extremas, hacemos de esta rama de la Geofísica más aplicada de lo que ya es, a parte de ser nueva para la Geofísica, tenemos la seguridad, de que ésta tecnología, al ser usada anteriormente en misiones espaciales importantes brindará un mejor apoyo para la exploración.

Al tratarse de realizar prospecciones y/o exploraciones en condiciones extremas para el ser humano, la convierte en una herramienta más segura y dinámiva, ya que los resultados los seguiremos visualizando por medio de una computadora pero de una manera un poco más diferente que lo convencional.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31

REFERENCIA BIBLIOGRAFICA

(1) http://www.tendencias21.net/Tecnologia-espacial-transferida-a-la-prospeccion-minera_a40915.html



GEOFISICA

Monitoreo Geofísico en Ecuador.
En estudios geofisicos la interpretación es muy importante,  con ella podemos determinar el éxito de un trabajo geofisico mostrando los correctos resultados con los datos pertinentes.

Pero en geofisica no solo nos esforzamos por brindar una correcta interpretación. El monitoreo geofisico también es una tarea importante.  Llamada también vigilancia geofisica, la usamos para monitorear en determinados periodos de tiempo algun evento natural, o en algunos casos especiales, eventos originados por el hombre. Por lo general este monitoreo o vigilancia geofisica nos ayuda en la previsión, prevención y alerta temprana de un posible evento, desastre o desarrollo geofisico.

Es así de esta forma, que el monitoreo geofisico tiene un impacto importante en el bienestar de una zona en particular. En los casos que sean eventos originados por el hombre, el monitoreo geofisico nos ayuda en la administración y control de una herramienta o evento.

Son varias las áreas en geofisica que se puede realizar un monitoreo. En vulcanologia el monitoreo se realiza con la ayuda de cámaras especiales en ubicaciones estratégicas, donde podemos visualizar la actividad de un volcán,  en minería en el área de geotecnia podemos monitorear las vibraciones sísmicas ocurridas por una voladura, en Meteorología monitoreamos las condiciones atmosféricas, y así en diferentes áreas en particular por citar otros ejemplos.

Todo ésto nos ayuda en la comprensión, análisis, prevención y previsión del comportamiento geofisico de un determinado evento.

Las herramientas que se utilizan para el monitoreo son diversas y no únicas. Se pueden usar cámaras, sismógrafos, satélites para organizar un adecuado monitoreo geofisico. La interpretación del monitoreo es fundamental para determinar si existe o no un peligro inminente o en consecuencia convertirse con el tiempo en un desastre geofisico.
Una computadora, laptop o sistema informático con acceso a Internet será fundamental para la visualización, análisis e interpretación correcta del evento en cuestión.

Una buena herramienta en el monitoreo geofisico de volcanes son los sismogramas en tiempo real los cuales ayudan en la visualización, análisis y estudio de las señales sismicas de la actividad interna del volcán y que nos alertan de una probable o innminente erupción.  Lo cual da oportunidad a la población para una posible evacuación. Para ésto nos apoyamos de una red sísmica telemétrica. Otra manera de monitorear en directo la actividad de un volcán es usando camaras especiales (como webcams) y con una conexión de internet transmitir en directo hasta nuestra base central las imágenes en vivo. Lo importante es transmitir y difundir la información en tiempo real.
 
Nuestro equipo realizará monitoreos en diversas áreas de la Geofisica con la diferencia que la visualización será de manera pública.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica

TAMBIÉN TE INTERESARÁ

Monitoreo Geofísico | Alfred Wegener. ¿Geofisico o Geologo? | Software Geofísico | La Geofísica y las Matemáticas | Desastres naturales y desastres geofísicos | Existencia de ondas gravitacionales | ¿Cómo se transmite el calor interno de la Tierra? | Desarrollo de magma | Monitoreo Geofísico
Todos sabemos de antemano que en nuestro planeta Tierra existen las aguas subterráneas y que éstas a la vez pueden formar lagunas subterráneas que se encuentran atrapadas a una determinada profundidad y que además no pueden moverse o trasladarse de un lugar a otro con la ayuda de la presión y la gravedad, y que son una gran fuente de agua dulce concentrada en nuestro planeta. Pero.. ¿Habrá otros lugares inóspedos del planeta  en donde podemos encontrar también fuentes de agua dulce? Sería ilógico pensar que no, porque aun el ser humano no ha descubierto al 100% los misterios y secretos que aun guardan nuestro hogar, La Tierra, por tanto puedo opinar que existe una variedad de "cosas" por descubrir y ésta es una de ellas!

Vista aéra de la Antártida
La pregunta inicial sería: Si en otros lugares de la Tierra hemos descubierto lagos subterráneos, como un ejemplo Mexico, cabe la posibilidad de encontrar agua dulce en un lugar recóndito del planeta como la Antártida. Veamos, la Antártida está formada por una gran masa de agua en su estado sólido observada también desde el espacio, lo que lo convierte en un continente como todos ya sabemos. ¿Qué misterios oculta la Antártida? Sabemos gracias a documentales de ciencia que la Antártida nos puede ayudar a determinar cómo fue nuestro clima hace millones de años haciendo perforaciones en las capas de hielo a ciertas profundidades y analizando luego las muestras de hielo viendo su contenido de CO2, ¿Pero eso es todo?

Recientemente se han descubierto que la Antártida posee a grandes profundidades lagos de agua dulce que probablemente podrían ser para consumo humano pero que se encuentran en estado líquido, lo que llamaremos Lagos Subantárticos ¿Qué? Es verdad.

Diagrama de una perforación en la Antártida.
"...científicos rusos en su base en la Antártida han estado perforando durante años el hielo antártico en busca de este elemento y a una profundidad de unos 3769.2 metros descubrieron un lago de agua dulce donde el agua subrió por el orificio del taladro unos 30 a 39 metros exùlsadndo el lodo que se estaba utilizando en la perforación formandose un tapón lo que no permitiría la contaminación del lago..."

Si deseas visita la web de la noticia..
Fuente: http://www.lanacion.com.ar/1447507-un-lago-de-agua-dulce-bajo-el-hielo-antartico

Gracias a estos tipos de descubrimientos los científicos podemos pensar y ananlizar la posibilidad que este medio natural como es la Antártica alvergue vida de cualquier naturaleza, como los microbios, y los podemos comparar con las mismas características de una de las lunas de Júpiter, ¿Se acuerdan?

La existencia del lago se dice que no era de sorprender a los científicos porque ya se han descubierto otros lagos subantárticos en el pasado pero éste lago en mención se desconoce su tamaño y su forma.
¿Qué tal? Lo que realamente debe intersarnos de estos descubrimientos es lo siguiente:

1. Esta agua dulce en el futuro ¿lo podriamos utilizar solo para consumo humano?
2. Podríamos basarnos en estos descubrimientos para poder encontrar la existencia de agua en otros planetas y porque no, de vida también.
3. Seguir estudiando cómo fue nuestro planeta hace millones de años atrás.
¿Tú que más estudiarías con la Antártida?

Para no perder la costumbre unos videitos del suceso.


 GEOFISICA - GEOTERMIA

Modelo del núcleo de la Tierra.
Nuestro planeta es uno de los únicos del Sistema Solar que se encuentra en un equilibrio natural a comparación de los otros planetas. A diferencia de nosotros unos son muy calientes y otros demasiado fríos. Nuestro planeta está en el umbral en la temperatura adecuada para que pueda albergar y sustentar la vida. La mayoría de planetas sustentan su propio calor interno y la Tierra es uno de ellos pero ¿Cómo es posible que la Tierra mantenga su propio calor interno? ¿Alguna vez terminará su calor?

El origen del calor interno de nuestro planeta habrá que estudiarla desde la formación de la misma hace ya miles de años por la colisión de fragmentos, fisión nuclear y la desintegración radioactiva de sus elementos pesados son el origen del calor interno de la Tierra.

Si algún día nuestro planeta será un planeta frío?. Sí. En algún momento en el tiempo la desintegración de los elementos pesados de nuestro planeta acabará, enfriándose lentamente. Es inevitable detenerlo pero sucederá.

Gracias a perforaciones realizadas en tiempos anteriores en nuestra litosfera nos dimos cuenta que la temperatura interna aumenta con la profundidad a lo que llamamos Gradiente Geotérmico. Continúa leyendo aqui.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica
GEOFISICA
@CGeofisica2015 |

Actualizado 20/07/15


"La atmósfera y la hidrosfera constituyen el sistema de capas fluidas superficiales del planeta, cuyos movimientos dinámicos están estrechamente relacionados." Wikipedia

La atmósfera de la Tierra es aquella que envuelve globalmente a nuestro planeta y es la que necesitamos para poder sobrevivir. En ella existen todos los elementos necesarios para que se pueda desarrollar la vida.

Estructura Vertical de la Atmósfera
Pero actualmente existe controversia y ciertas dudas de hasta dónde termina esta masa gaseosa de la Tierra. (1) Según la NASA consideraban la altura de 50 millas, es decir, unos 80,47 km hasta donde empieza el espacio. Pero no era del todo real, puesto que durante los años 1970, ocho pilotos de prueba de aviones cohete X-15 se unieron a los astronautas de los programas Mercurio, Géminis y Apolo donde el piloto Joe Walker alcanzó una altura de más de 100 km en dos vuelos que realizó en 1963.

Por lo que, según la Federación Aeronáutica Internacional define el límite del espacio a partir de los 100 km de altitud, por tanto, siendo la altura máxima de la Atmósfera los 100 km de altura.

Sin embargo, recientemente quizá se haya conseguido trazar una frontera aún más concreta gracias al instrumento denominado Supra-Ion de imágenes térmicas, que fue llevado por el cohete JOULE II el 19 de enero del 2007. Viajó a una altitud de unos 200 kilómetros sobre el nivel del mar y recolectó datos durante los cinco minutos que se desplazó a través del “borde del espacio”.

La información recibida del instrumento diseñado en la Universidad de Calgary constató la frontera entre la atmósfera de la Tierra y el espacio ultraterrestre: empezando a partir de los 118 km por encima de la superficie de la Tierra.

(2) Más de la mitad de su masa se concentra en los 6 primeros km y el 75% en los primeros 11 km de altura desde la superficie planetaria. Por lo mismo, conforme vamos ascendiendo la mezcla de gases que llamamos aire mantiene la proporción de sus distintos componentes casi invariable hasta los 80 km., aunque cada vez menos denso conforme estamos más arriba. Es decir, a partir de los 80 km. la composición del aire se hace más variable.

En los 5,5 kilómetros más cercanos a la superficie se encuentra la mitad de la masa total y antes de los 15 kilómetros de altura está el 95% de toda la materia atmosférica

Nuestro equipo de Ciencia y Geofísica se encuentra desarrollando un estudio de investigación sobre la Altura de la Atmósfera. Si quieres más detalles escribenos a geofísica@gmail.com

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

REFERENCIA BIBLIOGRÁFICA

(1) http://www.xatakaciencia.com/astronomia/donde-empieza-exactamente-el-espacio-exterior
(2) http://www.icarito.cl/enciclopedia/articulo/primer-ciclo-basico/ciencias-naturales/tierra-y-universo/2010/03/26-8960-9-la-atmosfera.shtml

BUSCADOR INTERNO

Tierra | Atmosfera | Atmósfera | Nivel del Mar | Aire | Altitud | Altura | Gases | NASA

¡ÚNETE A ESTA INVESTIGACIÓN!


¡Ayúdanos a investigar sobre la fisiografía y estratigrafía de las chimeneas de los volcanes donando con lo que tú puedas. Lo recaudado nos ayudará en los costos operativos para hacer realidad la investigación! o ¡Ayúdanos aportando ideas de cómo lo podrías hacer tú! Equipo de Ciencia y Geofísica.


 
make-money-88x31

GEOFISICA

Carta Geológica del Volcán Momotombo

"El volcán Momotombo, que hace un mes entró en actividad al noroeste de Nicaragua tras pasar 110 años dormido, registró este domingo una nueva explosión de gases y salida de lava, informó el gobierno." - La información

1. El volcan Momotombo se encuentra situado en Nicaragua, en el departamento de León, cerca del pueblo de Puerto Momotombo, tras la ribera del lago Xolotlán. Es del tipo estratovolcan con una altitud de aproximadamente 1297 msnm, siendo relativamente joven con una edad cronologica de unos 4500 años de antiguedad.
2. Presenta un cono joven con un cráter de 150 x 250 m de diametro. Las fumarolas en el cráter mantienen sus temperaturas en un rango entre 500 and 900 centígrados. En el cráter existen muchas áreas con azufre amarillo luminoso. (2)

3. El vapor del volcán es aprovechado para la generación de energía eléctrica mediante las instalaciones de la Planta Geotérmica "Momotombo".

4. Las coordenadas para localizar al volcán Momotombo son 12°25'28?N 86°32'19?O (1) o en todo caso con coordenadas geográficas de 12.423N, 86.540W (2)

5. Este volcán presenta una geología bien definida a lo que te mostramos su carta geológica a continuacion. (Puedes descargar también esta carta en nuestra sección de descarga para geofísicos)

6. Historial Eruptivo.

Momotombo, como todo volcán presenta un historial eruptivo el cual inicia o se tiene conocimiento desde el año 1522 hasta nuestra actualidad. Sus periodos eruptivos son 1522, 1609, 1764, 1870, 1885, 1886, 1905, 1918, 2005, 2014, 2015 y 2016.

Nótese que este volcán mantuvo inactividad durante aproximadamente 100 años acumulando energía y presión manifestandose con presencia de eventos sismicos marcados con magnitudes hasta 6.2 en escala de Richter.

7. Cronología Eruptiva

1522 Presentó marcada actividad eruptiva.
1609 Estuvo en erupción, y debido a la gran cantidad de sismos en esa región, la ciudad de León Viejo fue trasladada en 1610 al lugar que actualmente ocupa la ciudad de León.
1764 Fuerte erupción.
1870 Produjo potentes y prolongados retumbos.
1885 En octubre estuvo arrojando gran cantidad de humo y produciendo retumbos cada 15 minutos.
1886 En el mes de febrero se observó fuego en el cráter durante las noches, y el 20 de mayo entró en violenta erupción arrojando grandes cantidades de humo y ceniza hacia el lado de occidente y lava en dirección a Managua. El día 23 fueron completamente oscurecidas las ciudades de León, Corinto y Chinandega por una densa nube de ceniza procedente del volcán en erupción.
1905 Erupción. Flujo de lava.
1918 Durante el mes de abril arrojó gran cantidad de humo.
2005 Actividad sísmica, magnitud 3 en la escala de Richter.
2014 Actividad sísmica, magnitud 6.2 en la escala de Richter.
2015 Luego de 110 años de calma el 1 de diciembre el volcán erupcionó emanando cenizas, gases y lava.1
2016 El 3 de enero a a las 4:22 de la mañana, el volcán registró una explosión de gases y material incandescente sin provocar daños.2

Descarga este contenido en formato *.PDF

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.

make-money-88x31

REFERENCIAS BIBLIOGRÁFICAS

(1) https://es.wikipedia.org/wiki/Momotombo
(2) http://webserver2.ineter.gob.ni/vol/momotombo/descr.html
(3) http://noticias.lainformacion.com/catastrofes-y-accidentes/erupcion-volcanica/volcan-momotombo-de-nicaragua-vuelve-a-expulsar-lava-y-gases_ozBBHjPaY9JsSVOmne7SA7/


GEOFISICA

Un tremor volcánico es una manifestación de que algo está ocurriendo dentro de un volcán. Los sismómetros son la única herramienta y/o equipo que fue diseñada para detectarlos. Los tremores volcánicos son señales sísmicas parecidas a las registradas en un sismograma por un terremoto pero con características diferentes y muy particulares.

Estas solo son algunos conceptos que debes saber sobre la amplitud de los tremores volcánicos.

1. La amplitud de un tremor volcánico es por lo general constante, presentándose durante largos períodos de tiempo. En ocasiones, estos periodos de tiempo pueden durar desde horas hasta días.
2. En algunos volcanes donde hay dos conductos activos,  por ejemplo el volcán Arenal, presentan modulaciones en su amplitud, debido a las interferencias de dos señales de tremor volcánico, con frecuencias parecidas.
3. Los envolventes de la amplitud de un tremor volcánico se pueden modelar con soluciones de ecuaciones diferenciales o funciones exponenciales.
4. Altas amplitudes están correlacionadas con la fuerza de las erupciones, ceniza, vapor o gas.
5. Bajas amplitudes a erupciones de lava o flujos de lava.
6. Algunos volcanes (estromboleanos) pueden existir correlaciones entre la amplitud del tremor volcánico y cambios en la atmosférica.

Pueden haber más conceptos que el geofisico debe manejar sobre la amplitud de los tremores volcánicos. Asi que, iremos agregando más conceptos de éstas amplitudes de los tremores volcánicos.

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica.


GEOFÍSICA + GEOTERMIA


La Tierra, un planeta dinámico desde hace miles de años, nos ha demostrado su actividad y su energía a través de diferentes manifestaciones físicas como terremotos, erupciones volcánicas o por el movimiento de sus placas tectónicas. Todas estas manifestaciones tienen su origen desde el interior de nuestro planeta. A varios cientos de kilómetros de profundidad, la Tierra es un planeta caliente que se encuentra en movimiento debido a las altas presiones y temperaturas en su interior, va transmitiendo calor a través de los diferentes materiales y medios circundantes hasta llegar a la Litosfera donde se va enfriándose gradualmente. ¿Pero cómo se transmite el calor del interior de la Tierra?

El globo terrestre está compuesto por rocas, metales y elementos químicos que conforman la geoesfera, dividida en tres capas principales. La corteza que mide aproximadamente 70 kilómetros; el manto (el estrato intermedio) que está formado por rocas en estado semisólido y líquido y tiene un espesor de 3.000 km y, por último, la capa más profunda, el núcleo donde se registran las presiones y temperaturas más altas de la Tierra, de hasta 6.000 grados centígrados.

Cuando se formó el Planeta, la corteza terrestre se fue enfriando hasta solidificarse. No obstante, las capas inferiores no lo hicieron tan rápidamente ya que la corteza funciona como aislante, permitiendo que el manto y el núcleo mantengan sus altas temperaturas. De esta manera, la Tierra funciona como una gran máquina térmica, capaz de generar su propio calor y conservarlo en el interior del globo. (1)

Pero el calor que se concentra en su interior no es estático sino, se encuentra activamente en movimiento transmitiéndose desde el núcleo al manto de diferentes maneras. Las formas en la que se transmite el calor de la Tierra son por conducción, convección y radiación. Sin embargo, los tres tienen diferente grado de importancia en las diferentes capas de la Tierra: en la corteza el principal medio de transporte de calor es la conducción mientras que en el manto lo es la convección y radiación.

La conducción es la forma como se transporta el calor de un cuerpo más caliente a uno más frío con el cual se encuentra en contacto. La eficiencia de ésta depende de una propiedad de los materiales que se llama conductividad térmica y que nos dice cuál será la diferencia de temperatura provocada por un flujo de calor: a mayor conductividad menor será la diferencia de temperatura a través del material. Un ejemplo de buen conductor lo es una barra de metal, la cual al ser calentada en uno de sus extremos inmediatamente conducirá el calor hasta el otro extremo. Por otro lado, un ejemplo de mal conductor lo sería la madera, la cerámica y el aire.

La convección es un proceso un poco más complejo que se da solamente en fluidos (líquidos y gases). Al ser calentada la parte inferior de un fluido, ésta se expandirá y se volverá menos densa que la parte superior más fría, por lo cual tenderá a subir, con lo que la parte fría quedará ahora en contacto con la fuente de calor repitiéndose de esta forma el proceso y dando origen a lo que se llama celdas de convección, en las cuales existen corrientes ascendentes y descendentes. Este mecanismo se va a generar a partir de un cierto valor de la diferencia de temperatura y depende de la viscosidad y densidad del fluido.

La radiación es una forma de transporte de calor que es importante a temperaturas altas; en realidad todos los cuerpos que tienen temperatura por arriba del cero absoluto (cero grados Kelvin o -273.15°C) emiten radiación, pero la frecuencia de la radiación emitida es proporcional a la temperatura del material: los seres humanos emitimos radiación en el infrarrojo y un trozo de hierro calentado a temperaturas muy altas empezará a emitir en el espectro visible.

De esta forma observamos que el transporte de calor en el interior de la Tierra va a depender de la temperatura y de las características del material. La corteza se comporta como un sólido y tiene temperaturas relativamente bajas. El manto se comporta como un fluido y como la convección es mucho más eficiente en este caso, ése es el principal medio de transporte, aun cuando las temperaturas relativamente altas hacen posible que la energía también se transporte por medio de la radiación. (2)

"La Geofísica es la ciencia que se encarga del estudio de la Tierra desde el punto de vista de la Física. Investiga y analiza el origen de diversos fenómenos naturales como tsunamis, terremotos, erupciones volcánicas, etc. apoyándose de herramientas indirectas para su estudio tomando como base métodos cuantitativos y métodos basados en las medidas de la gravedad, campos magnéticos, electromagnéticos o eléctricos." - Ciencia y Geofísica

REFERENCIAS BIBLIOGRAFICAS
(1) https://www.sostenibilidadedp.es/pages/index/el-calor-de-la-tierra
(2) http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen2/ciencia3/058/htm/sec_4.htm

TAMBIÉN TE INTERESARÁ
Monitoreo Geofísico | Alfred Wegener. ¿Geofisico o Geologo? | Software Geofísico | La Geofísica y las Matemáticas | Desastres naturales y desastres geofísicos | Existencia de ondas gravitacionales | ¿Cómo se transmite el calor interno de la Tierra? | Desarrollo de magma | Monitoreo Geofísico

EXPLORANDO LAS PROFUNDIDADES DE LA TIERRA: DESCUBRIENDO LA COMPOSICIÓN INTERNA DEL PLANETA

La investigación de la composición interna del planeta es un campo fascinante y crucial dentro de la geofísica. A través de diversas técnicas y métodos, los científicos han logrado desentrañar los misterios que yacen bajo la superficie terrestre, revelando los materiales y estructuras que conforman el núcleo, el manto y la corteza de la Tierra.

EL NÚCLEO: EL CORAZÓN ARDIENTE DE NUESTRO PLANETA

El núcleo terrestre es una región fascinante y enigmática, cuyo estudio ha desafiado a los científicos durante décadas. Ubicado en el centro mismo de nuestro planeta, esta región ardiente y densa alberga secretos cruciales sobre el origen y la evolución de la Tierra, así como sobre los procesos dinámicos que moldean su superficie y su entorno.

a)     Estructura y composición del núcleo

El núcleo se divide en dos regiones principales: el núcleo externo y el núcleo interno. El núcleo externo tiene un radio aproximado de 3.480 kilómetros y se encuentra en estado líquido, compuesto principalmente por una aleación de hierro y níquel a temperaturas que oscilan entre los 4.000 y 5.000 grados Celsius. Esta capa líquida es responsable de la generación del campo magnético terrestre a través del proceso de dínamo auto sustentada.

Por otro lado, el núcleo interno tiene un radio de aproximadamente 1.220 kilómetros y se encuentra en estado sólido debido a las inmensas presiones que prevalecen en su interior, alcanzando un máximo de 360 giga pascales. Este núcleo sólido está compuesto principalmente por hierro cristalino con una estructura hexagonal compacta única, conocida como "hierro ligero".

La composición exacta del núcleo es un tema de debate continuo entre los científicos, pero se cree que además de hierro y níquel, también contiene pequeñas cantidades de otros elementos como azufre, oxígeno, silicio y posiblemente hidrógeno.

b)     Propiedades físicas y químicas del núcleo

El núcleo terrestre se encuentra en un estado único de alta presión y temperatura, lo que da lugar a propiedades físicas y químicas excepcionales. Una de las características más notables es la extrema densidad del núcleo, con un valor promedio de alrededor de 11.000 kilogramos por metro cúbico en el núcleo externo y 13.000 kilogramos por metro cúbico en el núcleo interno.

Otra propiedad fundamental es la alta conductividad eléctrica del núcleo líquido, que permite la generación del campo magnético terrestre a través del proceso de dínamo auto sustentada. Este campo magnético es crucial para proteger la vida en la Tierra de la radiación cósmica dañina y también desempeña un papel importante en la navegación y las comunicaciones.

Además, el núcleo es una fuente significativa de calor para el interior de la Tierra. Este calor, generado por la desintegración de elementos radiactivos y la cristalización del núcleo interno, impulsa la convección del manto y, en última instancia, la tectónica de placas en la superficie.

c)      Investigación y métodos de estudio

Debido a la inaccesibilidad directa del núcleo, los científicos han recurrido a diversos métodos indirectos para estudiar su composición y comportamiento. Uno de los enfoques más importantes es la sismología, que analiza la propagación de las ondas sísmicas generadas por terremotos y explosiones a través del interior de la Tierra. Al estudiar cómo estas ondas se refractan y reflejan en las diferentes capas del planeta, los sismólogos pueden inferir las propiedades físicas del núcleo y su estructura interna.

Otra técnica clave es el geomagnetismo, que estudia el campo magnético terrestre y sus variaciones. Mediante el análisis de los datos del campo magnético, los geofísicos pueden obtener información sobre los procesos dinámicos que ocurren en el núcleo externo líquido, responsable de la generación del campo magnético.

Además, los avances en la geodesia, la geoquímica y los modelos computacionales han contribuido significativamente a nuestro conocimiento sobre la composición y el comportamiento del núcleo. La integración de datos de múltiples fuentes ha permitido construir modelos cada vez más precisos y detallados de esta región crítica del interior de la Tierra.

d)     Implicaciones y desafíos futuros

El estudio del núcleo terrestre tiene implicaciones fundamentales para nuestra comprensión de la dinámica interna del planeta, la evolución del campo magnético y los procesos geológicos en la superficie. Además, el núcleo desempeña un papel crucial en la generación de energía a través del núcleo síntesis, lo que tiene implicaciones para la exploración de fuentes de energía alternativas.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno al núcleo. Por ejemplo, los científicos continúan investigando la naturaleza exacta de la transición entre el núcleo externo líquido y el núcleo interno sólido, así como los mecanismos que impulsan la convección en el núcleo externo y la generación del campo magnético.

Además, el estudio del núcleo también plantea desafíos técnicos y logísticos, ya que las profundidades involucradas son extremadamente grandes y las condiciones de presión y temperatura son difíciles de replicar en laboratorios terrestres.

A pesar de estas dificultades, la exploración del núcleo terrestre sigue siendo una prioridad para los geofísicos y los científicos planetarios, ya que comprender esta región clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.

EL MANTO: LA CAPA INTERMEDIA EN EBULLICIÓN

El manto es una vasta región que se extiende desde la base de la corteza terrestre hasta el núcleo externo, abarcando aproximadamente el 84% del volumen total del planeta [1]. Esta capa intermedia, compuesta principalmente de silicatos ricos en hierro y magnesio, se encuentra en un estado plástico y dinámico, siendo el escenario de procesos fundamentales que moldean la superficie terrestre.

a)     Estructura y composición del manto

El manto se divide en dos regiones principales: el manto superior y el manto inferior, separados por una discontinuidad de fase a una profundidad aproximada de 660 kilómetros. Esta discontinuidad se debe a cambios en las propiedades físicas y químicas de los materiales que componen el manto.

El manto superior, que se extiende desde la base de la corteza hasta una profundidad de aproximadamente 660 kilómetros, está compuesto principalmente de olivino y piroxeno ricos en magnesio y hierro. Esta región es relativamente más fría y rígida en comparación con el manto inferior.

Por otro lado, el manto inferior, que se extiende desde los 660 kilómetros hasta la base del manto a una profundidad de aproximadamente 2.900 kilómetros, está compuesto principalmente de silicatos de magnesio y hierro con estructuras cristalinas más densas, como la perovskita y la ferropericlasa. Esta región es más caliente y fluida que el manto superior.

b)     Convección y dinámica del manto

Una de las características más importantes del manto es su comportamiento convectivo, impulsado por el calor interno del planeta y las diferencias de densidad dentro de la capa. Este proceso de convección, en el cual el material caliente asciende y el material más frío desciende, es responsable de la tectónica de placas, uno de los procesos geológicos más importantes de la Tierra.

La convección en el manto genera una deformación lenta pero continua, que se manifiesta en la formación de cordilleras montañosas, la actividad volcánica y los terremotos en las zonas de subducción y divergencia de las placas tectónicas. Además, la convección también influye en la generación del campo magnético terrestre a través de su interacción con el núcleo externo líquido.

c)      Propiedades físicas y químicas del manto

El manto presenta una gran variedad de propiedades físicas y químicas que influyen en su comportamiento dinámico. Una de las propiedades más importantes es la reología, que describe cómo los materiales del manto responden a las tensiones y deformaciones a largo plazo.

El manto superior tiene un comportamiento más rígido y frágil, lo que resulta en la formación de fallas y deformaciones frágiles en esta región. Por otro lado, el manto inferior exhibe un comportamiento más dúctil y fluido debido a las altas temperaturas y presiones presentes a esas profundidades.

Además, el manto tiene una alta conductividad térmica, lo que facilita la transferencia de calor desde el núcleo externo hacia la superficie terrestre. Esta transferencia de calor es fundamental para impulsar la convección y mantener activos los procesos tectónicos en la superficie.

d)     Investigación y métodos de estudio

El estudio del manto terrestre implica una combinación de técnicas y enfoques, incluyendo la sismología, la geodesia, la geoquímica y los modelos computacionales. La sismología, en particular, ha sido clave para comprender la estructura y composición del manto al analizar la propagación de las ondas sísmicas generadas por terremotos y explosiones.

Otra técnica importante es el estudio de los xenolitos, que son fragmentos de roca del manto superior transportados hasta la superficie por erupciones volcánicas. El análisis de estos xenolitos ha proporcionado información valiosa sobre la composición mineral y química del manto superior.

Además, los avances en la geodesia, como el uso de satélites y mediciones de gravedad, han permitido obtener información sobre la distribución de masas y la dinámica del manto a escalas regionales y globales.

e)     Implicaciones y desafíos futuros

El estudio del manto tiene implicaciones fundamentales para nuestra comprensión de la dinámica interna de la Tierra, la tectónica de placas, la actividad volcánica y la evolución del campo magnético terrestre. Además, el manto desempeña un papel crucial en los ciclos geoquímicos del planeta, influyendo en la composición de la corteza y la atmósfera.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno al manto. Por ejemplo, los científicos continúan investigando los mecanismos exactos que impulsan la convección en el manto y su interacción con el núcleo externo líquido.

Además, el estudio del manto también plantea desafíos técnicos y logísticos, ya que las profundidades involucradas son extremadamente grandes y las condiciones de presión y temperatura son difíciles de replicar en laboratorios terrestres. Los avances en las técnicas de experimentación a altas presiones y temperaturas, así como en los modelos computacionales, serán fundamentales para mejorar nuestra comprensión del manto en el futuro.

A pesar de estas dificultades, la exploración del manto terrestre sigue siendo una prioridad para los geofísicos y los científicos planetarios, ya que comprender esta región clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.


LA CORTEZA: LA DELGADA CAPA EXTERIOR

La corteza terrestre es la capa más externa y delgada de nuestro planeta, pero desempeña un papel fundamental en la dinámica geológica y en el sostén de la vida en la superficie. A pesar de su relativa delgadez, la corteza exhibe una gran diversidad en términos de composición, estructura y procesos que la moldean.

a)     Estructura y composición de la corteza

La corteza terrestre se divide en dos tipos principales: la corteza continental y la corteza oceánica. Estas dos variedades difieren significativamente en su composición química, espesor y propiedades físicas.

La corteza continental tiene un espesor promedio de aproximadamente 35 kilómetros, aunque puede alcanzar espesores de hasta 70 kilómetros en algunas regiones montañosas. Está compuesta principalmente de rocas graníticas ricas en sílice (SiO2) y aluminio, con una composición química promedio similar a la de las rocas ígneas félsicas.

Por otro lado, la corteza oceánica es mucho más delgada, con un espesor promedio de solo 6 a 7 kilómetros. Está formada principalmente por rocas basálticas más densas y ricas en hierro y magnesio, con una composición química similar a la de las rocas ígneas máficas.

Estas diferencias en la composición química y mineral de la corteza tienen implicaciones significativas en su densidad, comportamiento reológico y procesos geológicos asociados, como la formación de montañas, la actividad volcánica y la deformación tectónica.

 

b)     Formación y evolución de la corteza

La formación y evolución de la corteza terrestre están estrechamente vinculadas a los procesos de tectónica de placas y al ciclo de las rocas. La corteza oceánica se forma continuamente en las dorsales oceánicas, donde el magma basáltico asciende y se solidifica para formar nueva corteza oceánica. A medida que las placas tectónicas se alejan de las dorsales, la corteza oceánica se enfría y se vuelve más densa, hundiéndose eventualmente en las zonas de subducción.

Por otro lado, la corteza continental es mucho más antigua y se ha formado a través de una combinación de procesos, incluyendo la fusión parcial del manto, la acreción de arcos volcánicos y la colisión y amalgamación de terrenos tectónicos.  La corteza continental es relativamente más ligera que la corteza oceánica y, por lo tanto, tiende a flotar sobre el manto, evitando ser reciclada en las zonas de subducción.

c)      Propiedades físicas y químicas de la corteza

La corteza terrestre exhibe una amplia gama de propiedades físicas y químicas que influyen en su comportamiento y en los procesos geológicos que ocurren en ella. Una propiedad clave es la reología, que describe cómo las rocas de la corteza responden a las tensiones y deformaciones a largo plazo.

La corteza continental superior tiende a ser más rígida y frágil, lo que resulta en la formación de fallas y estructuras de deformación frágiles. Por otro lado, la corteza inferior y la corteza oceánica exhiben un comportamiento más dúctil y fluido debido a las altas temperaturas y presiones presentes a esas profundidades.

Además, la corteza tiene una baja conductividad térmica en comparación con el manto subyacente, lo que influye en la transferencia de calor desde el interior del planeta hacia la superficie. Esta transferencia de calor es fundamental para impulsar procesos como el vulcanismo y la actividad hidrotermal.

d)     Investigación y métodos de estudio

El estudio de la corteza terrestre implica una combinación de técnicas y enfoques, incluyendo la geología de campo, la sismología, la geoquímica y los métodos de prospección geofísica. La geología de campo proporciona observaciones directas de las rocas y estructuras de la corteza, mientras que la sismología permite inferir su estructura interna y composición al analizar la propagación de las ondas sísmicas.

La geoquímica, por su parte, involucra el análisis de la composición química e isotópica de las rocas y minerales de la corteza, lo que proporciona información sobre su origen y evolución. Además, los métodos de prospección geofísica, como la gravimetría y la magnetometría, permiten mapear las variaciones en la densidad y las propiedades magnéticas de la corteza, respectivamente.

e)     Implicaciones y desafíos futuros

El estudio de la corteza terrestre tiene implicaciones fundamentales para nuestra comprensión de la evolución geológica del planeta, la formación de recursos minerales, la evaluación de riesgos naturales y la exploración de recursos energéticos. Además, la corteza desempeña un papel crucial en el ciclo del agua y en el sostén de la vida en la superficie terrestre.

Sin embargo, aún quedan muchos desafíos y preguntas sin responder en torno a la corteza. Por ejemplo, los científicos continúan investigando los mecanismos exactos que controlan la formación y evolución de la corteza continental, así como los procesos que dan lugar a las diferencias entre la corteza continental y oceánica.

Además, el estudio de la corteza también plantea desafíos técnicos y logísticos, ya que su accesibilidad está limitada por su profundidad y la complejidad de las estructuras geológicas. Los avances en las técnicas de perforación profunda, la sismología de alta resolución y los métodos de prospección geofísica serán fundamentales para mejorar nuestra comprensión de la corteza en el futuro.

A pesar de estas dificultades, la exploración de la corteza terrestre sigue siendo una prioridad para los geólogos y geofísicos, ya que comprender esta capa clave nos brinda una visión más profunda de los procesos fundamentales que dieron forma a nuestro planeta y continúan moldeando su evolución.

 

MÉTODOS DE INVESTIGACIÓN: REVELANDO LOS SECRETOS DEL INTERIOR TERRESTRE

Para explorar la composición interna del planeta, los geofísicos emplean una variedad de técnicas y enfoques, cada uno de los cuales aporta información valiosa sobre diferentes aspectos del interior de la Tierra.

Sismología: El estudio de las ondas sísmicas generadas por terremotos y explosiones ha sido fundamental para comprender la estructura interna del planeta. Al analizar cómo se propagan estas ondas a través de los diferentes materiales, los sismólogos pueden inferir la composición y las propiedades físicas de las capas internas de la Tierra.

Geodesia: Esta disciplina se encarga de estudiar la forma, las dimensiones y el campo gravitacional de la Tierra. Mediante el análisis de las variaciones en la gravedad y el movimiento de satélites, los geodesistas pueden obtener información sobre la distribución de masas en el interior del planeta y las deformaciones de la superficie terrestre.

Geomagnetismo: El estudio del campo magnético terrestre y sus variaciones proporciona pistas sobre la naturaleza del núcleo externo líquido y los procesos dinámicos que ocurren en su interior.

Geoquímica: El análisis de la composición química e isotópica de las rocas y minerales, tanto en la superficie como en muestras obtenidas mediante perforaciones profundas, aporta información valiosa sobre los procesos de formación y evolución de los materiales que conforman el interior de la Tierra.

Exploraciones directas: Aunque limitadas en profundidad, las perforaciones profundas y los estudios de xenolitos (fragmentos de roca del manto superior transportados hasta la superficie por erupciones volcánicas) han proporcionado muestras físicas del interior terrestre para su análisis en laboratorio.

Estas técnicas, junto con el desarrollo de modelos computacionales avanzados y la integración de datos de múltiples fuentes, han permitido a los geofísicos construir una imagen cada vez más detallada y precisa de la composición y estructura interna de nuestro planeta.

 

GEOFISICA!


Cabe vez que comento o menciono sobre Geofísica me da gusto saber que pude elegir bien la profesión que escogí estudiar y es que la Geofísica tiene tantas materias por investigar  de diversas formas y maneras que nos faltaría el tiempo en poder terminar de hacerlo.

Nuestro blog se compromete en brindarles mayor información sobre Laboratorios Geofísicos alrededor del Mundo para tener una mayor base de datos posibles. Y es que el Geofísico es tan ingenioso que desde hace mucho tiempo viene trabajando junto con laboratorios cada vez que realiza estudios de campo o interpretaciones cuantitativas; pero nunca llegué a imaginar un laboratorio geofísico subterráneo donde se realicen estudios geofísicos sobre mareas terrestres, gravimetría y calibración de gravímetros. ¡Pues es cierto! Ya que existe desde el año 1972 en el Valle de los Caídos, en la sierra noroeste de Madrid, España. En este laboratorio geofísico subterráneo ubicado en el subsuelo de la basílica del Valle de los Caídos han podido trabajar científicos españoles, alemanes y finlandeses. Incluso fue catalogado como uno de los mejores laboratorios más sotisficados de toda Europa.

Lo que hace ideal el funcionamiento de este laboratorio es su muy buena ubicación en dicho lugar debido a que puede presentar unas condiciones muy favorables, por no decir excepcionales, de una gran estabilidad, que permite hacer de forma magnifica las medidas geodésicas. Fuente:http://www.elvalledeloscaidos.es/portal/archives/3282

En las instalaciones de dicho laboratorio geofísico subterráneo existen las siguientes estaciones: un laboratorio subterráneo de mareas terrestres, una estación de gravedad absoluta y una línea de calibración de gravímetros. Fuente:http://www.elvalledeloscaidos.es/portal/archives/3282

Este laboratorio ha estado operando durante unos 37 años realizándose numerosos estudios científicos realizados durante ese tiempo por científicos de Europa. Simplemente muy interesante. Seguiremos actualizando más sobre este maravilloso laboratorio Geofísico.

Les dejamos algunas imágenes sobre algunos equipos geofísicos que se utilizan en este LAboratorio ubicado en el Valle de los Caidos en España.

Ambiente de trabajo.
Aparato de observación gravimétrico.



















Estos son aparatos de observación gravímetricas (gravímetros absolutos) de las citadas instalaciones del Valle de los Caídos.

Este es una veleta-anemómetro para medir la dirección de los vientos en ese lugar lejano.

Para cualquier consulta y/o comentarios no dudes en comentarnos o mandarnos un email a marvar26@gmail.com